These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 21847201)

  • 1. Individual particle handling in a microfluidic system based on parallel laser trapping.
    Hamel P; Rachet B; Werner M; Grossenbacher M; Vogel H; Forrer M; Ryser P; Salathé RP
    Opt Lett; 2011 Aug; 36(16):3182-4. PubMed ID: 21847201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells.
    Werner M; Merenda F; Piguet J; Salathé RP; Vogel H
    Lab Chip; 2011 Jul; 11(14):2432-9. PubMed ID: 21655617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip.
    Boer G; Johann R; Rohner J; Merenda F; Delacrétaz G; Renaud P; Salathé RP
    Rev Sci Instrum; 2007 Nov; 78(11):116101. PubMed ID: 18052509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays.
    Evander M; Johansson L; Lilliehorn T; Piskur J; Lindvall M; Johansson S; Almqvist M; Laurell T; Nilsson J
    Anal Chem; 2007 Apr; 79(7):2984-91. PubMed ID: 17313183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple traps created with an inclined dual-fiber system.
    Liu Y; Yu M
    Opt Express; 2009 Nov; 17(24):21680-90. PubMed ID: 19997409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping.
    Applegate RW; Squier J; Vestad T; Oakey J; Marr DW; Bado P; Dugan MA; Said AA
    Lab Chip; 2006 Mar; 6(3):422-6. PubMed ID: 16511626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trapping of microparticles in the near field of an ultrasonic transducer.
    Lilliehorn T; Simu U; Nilsson M; Almqvist M; Stepinski T; Laurell T; Nilsson J; Johansson S
    Ultrasonics; 2005 Mar; 43(5):293-303. PubMed ID: 15737379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction.
    Ruh D; Tränkle B; Rohrbach A
    Opt Express; 2011 Oct; 19(22):21627-42. PubMed ID: 22109012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially resolved analysis of small particles by confocal Raman microscopy: depth profiling and optical trapping.
    Bridges TE; Houlne MP; Harris JM
    Anal Chem; 2004 Feb; 76(3):576-84. PubMed ID: 14750849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectrally resolved flow imaging of fluids inside a microfluidic chip with ultrahigh time resolution.
    Harel E; Pines A
    J Magn Reson; 2008 Aug; 193(2):199-206. PubMed ID: 18538599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip fluorescence-activated particle counting and sorting system.
    Kang Y; Wu X; Wang YN; Li D
    Anal Chim Acta; 2008 Sep; 626(1):97-103. PubMed ID: 18761126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle size limits when using optical trapping and deflection of particles for sorting using diode laser bars.
    Applegate RW; Marr DW; Squier J; Graves SW
    Opt Express; 2009 Sep; 17(19):16731-8. PubMed ID: 19770888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Microparticle Measurements:  Laser Trapping-Absorption Microspectroscopy under Solution-Flow Conditions.
    Kim HB; Kogi O; Kitamura N
    Anal Chem; 1999 Oct; 71(19):4338-43. PubMed ID: 21662861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulator-based dielectrophoretic single particle and single cancer cell trapping.
    Bhattacharya S; Chao TC; Ros A
    Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments.
    Dochow S; Krafft C; Neugebauer U; Bocklitz T; Henkel T; Mayer G; Albert J; Popp J
    Lab Chip; 2011 Apr; 11(8):1484-90. PubMed ID: 21340095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diamagnetic repulsion--a versatile tool for label-free particle handling in microfluidic devices.
    Peyman SA; Kwan EY; Margarson O; Iles A; Pamme N
    J Chromatogr A; 2009 Dec; 1216(52):9055-62. PubMed ID: 19592004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards an integrated optical single aerosol particle lab.
    Horstmann M; Probst K; Fallnich C
    Lab Chip; 2012 Jan; 12(2):295-301. PubMed ID: 22105700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow-dependent optofluidic particle trapping and circulation.
    Blakely JT; Gordon R; Sinton D
    Lab Chip; 2008 Aug; 8(8):1350-6. PubMed ID: 18651078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution.
    Tanaka Y; Yoshikawa H; Masuhara H
    J Phys Chem B; 2006 Sep; 110(36):17906-11. PubMed ID: 16956280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array.
    Schonbrun E; Steinvurzel PE; Crozier KB
    Opt Express; 2011 Jan; 19(2):1385-94. PubMed ID: 21263680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.