BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21848134)

  • 1. Climate warming and pikeperch year-class catches in the Baltic Sea.
    Pekcan-Hekim Z; Urho L; Auvinen H; Heikinheimo O; Lappalainen J; Raitaniemi J; Söderkultalahti P
    Ambio; 2011 Jul; 40(5):447-56. PubMed ID: 21848134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pikeperch (Sander lucioperca (L.)) in decline: high mortality of three populations in the northern Baltic Sea.
    Mustamäki N; Bergström U; Adjers K; Sevastik A; Mattila J
    Ambio; 2014 Apr; 43(3):325-36. PubMed ID: 23918412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Management of pikeperch migrating over management areas in a Baltic archipelago area.
    Saulamo K; Thoresson G
    Ambio; 2005 Mar; 34(2):120-4. PubMed ID: 15865308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated distributions of Baltic Sea-ice in warming climate and consequences for the winter habitat of the Baltic ringed seal.
    Meier HE; Döscher R; Halkka A
    Ambio; 2004 Jun; 33(4-5):249-56. PubMed ID: 15264604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Levels of PCDD/F and dioxin-like PCB in Baltic fish of different age and gender.
    Pandelova M; Henkelmann B; Roots O; Simm M; Järv L; Benfenati E; Schramm KW
    Chemosphere; 2008 Mar; 71(2):369-78. PubMed ID: 17931686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coastal and freshwater pikeperch (Sander lucioperca) populations differ genetically in the Baltic Sea basin.
    Säisä M; Salminen M; Koljonen ML; Ruuhijärvi J
    Hereditas; 2010 Oct; 147(5):205-14. PubMed ID: 21039457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Warming shelf seas drive the subtropicalization of European pelagic fish communities.
    Montero-Serra I; Edwards M; Genner MJ
    Glob Chang Biol; 2015 Jan; 21(1):144-53. PubMed ID: 25230844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coastal fisheries in the Eastern Baltic Sea (Gulf of Finland) and its basin from the 15 to the Early 20th centuries.
    Lajus J; Kraikovski A; Lajus D
    PLoS One; 2013; 8(10):e77059. PubMed ID: 24204735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Echoes from the past: a healthy Baltic Sea requires more effort.
    Kotilainen AT; Arppe L; Dobosz S; Jansen E; Kabel K; Karhu J; Kotilainen MM; Kuijpers A; Lougheed BC; Meier HE; Moros M; Neumann T; Porsche C; Poulsen N; Rasmussen P; Ribeiro S; Risebrobakken B; Ryabchuk D; Schimanke S; Snowball I; Spiridonov M; Virtasalo JJ; Weckström K; Witkowski A; Zhamoida V
    Ambio; 2014 Feb; 43(1):60-8. PubMed ID: 24414805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change effects on the Baltic Sea borderland between land and sea.
    Strandmark A; Bring A; Cousins SA; Destouni G; Kautsky H; Kolb G; de la Torre-Castro M; Hambäck PA
    Ambio; 2015 Jan; 44 Suppl 1(Suppl 1):S28-38. PubMed ID: 25576278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate risks to fishing species and fisheries in the China Seas.
    Ma S; Kang B; Li J; Sun P; Liu Y; Ye Z; Tian Y
    Sci Total Environ; 2023 Jan; 857(Pt 1):159325. PubMed ID: 36216044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shift in tuna catches due to ocean warming.
    Monllor-Hurtado A; Pennino MG; Sanchez-Lizaso JL
    PLoS One; 2017; 12(6):e0178196. PubMed ID: 28591205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redistribution of fisheries catch potential in Mediterranean and North European waters under climate change scenarios.
    Ben Lamine E; Schickele A; Guidetti P; Allemand D; Hilmi N; Raybaud V
    Sci Total Environ; 2023 Jun; 879():163055. PubMed ID: 36972882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the effects of eutrophication mitigation on predatory fish biomass and the value of recreational fisheries.
    Sundblad G; Bergström L; Söderqvist T; Bergström U
    Ambio; 2020 May; 49(5):1090-1099. PubMed ID: 31598833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early arrival of spring-spawning Atlantic herring Clupea harengus at their spawning ground in the Kiel Fjord, western Baltic, relates to increasing winter seawater temperature.
    Ory NC; Gröger JP; Lehmann A; Mittermayer F; Neuheimer AB; Clemmesen C
    J Fish Biol; 2024 Jun; ():. PubMed ID: 38859548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of climate change on fish population dynamics in the Baltic sea: a dynamical downscaling investigation.
    Mackenzie BR; Meier HE; Lindegren M; Neuenfeldt S; Eero M; Blenckner T; Tomczak MT; Niiranen S
    Ambio; 2012 Sep; 41(6):626-36. PubMed ID: 22926884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulated sea surface temperature and heat fluxes in different climates of the Baltic Sea.
    Döscher R; Meier HE
    Ambio; 2004 Jun; 33(4-5):242-8. PubMed ID: 15264603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the roles of environmental factors in coastal fish production in the northern Baltic Sea: a Bayesian network application.
    Uusitalo L; Kuikka S; Kauppila P; Söderkultalahti P; Bäck S
    Integr Environ Assess Manag; 2012 Jul; 8(3):445-55. PubMed ID: 21309077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing the potential for predictive modeling and mapping and extending its use as a tool for evaluating management scenarios and economic valuation in the Baltic Sea (PREHAB).
    Lindegarth M; Bergström U; Mattila J; Olenin S; Ollikainen M; Downie AL; Sundblad G; Bučas M; Gullström M; Snickars M; von Numers M; Svensson JR; Kosenius AK
    Ambio; 2014 Feb; 43(1):82-93. PubMed ID: 24414807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Denitrification in the river estuaries of the northern Baltic Sea.
    Silvennoinen H; Hietanen S; Liikanen A; Stange CF; Russow R; Kuparinen J; Martikainen PJ
    Ambio; 2007 Apr; 36(2-3):134-40. PubMed ID: 17520925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.