BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21848297)

  • 1. An easily accessible isoindigo-based polymer for high-performance polymer solar cells.
    Wang E; Ma Z; Zhang Z; Vandewal K; Henriksson P; Inganäs O; Zhang F; Andersson MR
    J Am Chem Soc; 2011 Sep; 133(36):14244-7. PubMed ID: 21848297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage.
    Wang E; Ma Z; Zhang Z; Henriksson P; Inganäs O; Zhang F; Andersson MR
    Chem Commun (Camb); 2011 May; 47(17):4908-10. PubMed ID: 21431215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High performance low band gap polymer solar cells with a non-conventional acceptor.
    He Y; You J; Dou L; Chen CC; Richard E; Cha KC; Wu Y; Li G; Yang Y
    Chem Commun (Camb); 2012 Aug; 48(61):7616-8. PubMed ID: 22732926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of new semiconducting polymers for high performance solar cells.
    Liang Y; Wu Y; Feng D; Tsai ST; Son HJ; Li G; Yu L
    J Am Chem Soc; 2009 Jan; 131(1):56-7. PubMed ID: 19093812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of isoindigo-based oligothiophenes for molecular bulk heterojunction solar cells.
    Mei J; Graham KR; Stalder R; Reynolds JR
    Org Lett; 2010 Feb; 12(4):660-3. PubMed ID: 20099892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells.
    Dou L; Gao J; Richard E; You J; Chen CC; Cha KC; He Y; Li G; Yang Y
    J Am Chem Soc; 2012 Jun; 134(24):10071-9. PubMed ID: 22640170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells.
    Wang M; Hu X; Liu P; Li W; Gong X; Huang F; Cao Y
    J Am Chem Soc; 2011 Jun; 133(25):9638-41. PubMed ID: 21630707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkyl chain engineering on a dithieno[3,2-b:2',3'-d]silole-alt-dithienylthiazolo[5,4-d]thiazole copolymer toward high performance bulk heterojunction solar cells.
    Zhang ZG; Min J; Zhang S; Zhang J; Zhang M; Li Y
    Chem Commun (Camb); 2011 Sep; 47(33):9474-6. PubMed ID: 21785761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-bandgap donor-acceptor conjugated polymer sensitizers for dye-sensitized solar cells.
    Fang Z; Eshbaugh AA; Schanze KS
    J Am Chem Soc; 2011 Mar; 133(9):3063-9. PubMed ID: 21306160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A weak donor-strong acceptor strategy to design ideal polymers for organic solar cells.
    Zhou H; Yang L; Stoneking S; You W
    ACS Appl Mater Interfaces; 2010 May; 2(5):1377-83. PubMed ID: 20438089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells.
    Zou Y; Najari A; Berrouard P; Beaupré S; Aïch BR; Tao Y; Leclerc M
    J Am Chem Soc; 2010 Apr; 132(15):5330-1. PubMed ID: 20349958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers.
    Lei T; Wang JY; Pei J
    Acc Chem Res; 2014 Apr; 47(4):1117-26. PubMed ID: 24502431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoindigo-based small molecules for high-performance solution-processed organic photovoltaic devices: the electron donating effect of the donor group on photo-physical properties and device performance.
    Elsawy W; Lee CL; Cho S; Oh SH; Moon SH; Elbarbary A; Lee JS
    Phys Chem Chem Phys; 2013 Sep; 15(36):15193-203. PubMed ID: 23928904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorine substitution enhanced photovoltaic performance of a D-A(1)-D-A(2) copolymer.
    Dang D; Chen W; Yang R; Zhu W; Mammo W; Wang E
    Chem Commun (Camb); 2013 Oct; 49(81):9335-7. PubMed ID: 24000353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the photocurrent in diketopyrrolopyrrole-based polymer solar cells via energy level control.
    Li W; Roelofs WS; Wienk MM; Janssen RA
    J Am Chem Soc; 2012 Aug; 134(33):13787-95. PubMed ID: 22812425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization and photovoltaic applications of a low band gap polymer based on s-tetrazine and dithienosilole.
    Ding J; Song N; Li Z
    Chem Commun (Camb); 2010 Dec; 46(45):8668-70. PubMed ID: 20953519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternating polyfluorenes collect solar light in polymer photovoltaics.
    Inganäs O; Zhang F; Andersson MR
    Acc Chem Res; 2009 Nov; 42(11):1731-9. PubMed ID: 19835413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Easily Accessible Low Band Gap Polymer for Efficient Nonfullerene Polymer Solar Cells with a Low E
    Park M; Jung JW
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5435-5440. PubMed ID: 30623665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a new s-tetrazine-based copolymer for efficient solar cells.
    Li Z; Ding J; Song N; Lu J; Tao Y
    J Am Chem Soc; 2010 Sep; 132(38):13160-1. PubMed ID: 20809639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.