These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 21848346)
1. One-step hydrothermal synthesis of mesoporous anatase TiO₂ microsphere and interfacial control for enhanced lithium storage performance. Lee KH; Song SW ACS Appl Mater Interfaces; 2011 Sep; 3(9):3697-703. PubMed ID: 21848346 [TBL] [Abstract][Full Text] [Related]
2. Construction of TiO₂ hierarchical nanostructures from nanocrystals and their photocatalytic properties. Zhu T; Li J; Wu Q ACS Appl Mater Interfaces; 2011 Sep; 3(9):3448-53. PubMed ID: 21800846 [TBL] [Abstract][Full Text] [Related]
3. SBA-15 confined synthesis of TiNb2O7 nanoparticles for lithium-ion batteries. Fei L; Xu Y; Wu X; Li Y; Xie P; Deng S; Smirnov S; Luo H Nanoscale; 2013 Nov; 5(22):11102-7. PubMed ID: 24071825 [TBL] [Abstract][Full Text] [Related]
4. Nanocrystal-constructed mesoporous single-crystalline Co₃O₄ nanobelts with superior rate capability for advanced lithium-ion batteries. Huang H; Zhu W; Tao X; Xia Y; Yu Z; Fang J; Gan Y; Zhang W ACS Appl Mater Interfaces; 2012 Nov; 4(11):5974-80. PubMed ID: 23054348 [TBL] [Abstract][Full Text] [Related]
5. Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency. Shao W; Gu F; Li C; Lu M Inorg Chem; 2010 Jun; 49(12):5453-9. PubMed ID: 20507078 [TBL] [Abstract][Full Text] [Related]
7. Development of mesoporous TiO(2) microspheres with high specific surface area for selective enrichment of phosphopeptides by mass spectrometric analysis. Tang J; Yin P; Lu X; Qi D; Mao Y; Deng C; Yang P; Zhang X J Chromatogr A; 2010 Apr; 1217(15):2197-205. PubMed ID: 20219200 [TBL] [Abstract][Full Text] [Related]
8. Hierarchical porous anatase TiO2 derived from a titanium metal-organic framework as a superior anode material for lithium ion batteries. Xiu Z; Alfaruqi MH; Gim J; Song J; Kim S; Vu Thi T; Duong PT; Baboo JP; Mathew V; Kim J Chem Commun (Camb); 2015 Aug; 51(61):12274-7. PubMed ID: 26137998 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of size-tunable anatase TiO₂ nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride-graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. Qiu Y; Yan K; Yang S; Jin L; Deng H; Li W ACS Nano; 2010 Nov; 4(11):6515-26. PubMed ID: 21038869 [TBL] [Abstract][Full Text] [Related]
10. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study. Ding Z; Zhao L; Suo L; Jiao Y; Meng S; Hu YS; Wang Z; Chen L Phys Chem Chem Phys; 2011 Sep; 13(33):15127-33. PubMed ID: 21789334 [TBL] [Abstract][Full Text] [Related]
11. Mesoporous anatase TiO2 nanorods as thermally robust anode materials for Li-ion batteries: detailed insight into the formation mechanism. Seisenbaeva GA; Nedelec JM; Daniel G; Tiseanu C; Parvulescu V; Pol VG; Abrego L; Kessler VG Chemistry; 2013 Dec; 19(51):17439-44. PubMed ID: 24243542 [TBL] [Abstract][Full Text] [Related]
12. Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4. Rock SE; Wu L; Crain DJ; Krishnan S; Roy D ACS Appl Mater Interfaces; 2013 Mar; 5(6):2075-84. PubMed ID: 23432452 [TBL] [Abstract][Full Text] [Related]
13. High-surface-area mesoporous TiO2 microspheres via one-step nanoparticle self-assembly for enhanced lithium-ion storage. Wang HY; Chen J; Hy S; Yu L; Xu Z; Liu B Nanoscale; 2014 Dec; 6(24):14926-31. PubMed ID: 25363569 [TBL] [Abstract][Full Text] [Related]
14. Crystallinity-controlled titanium oxide-carbon nanocomposites with enhanced lithium storage performance. Zhou Y; Lee J; Lee CW; Wu M; Yoon S ChemSusChem; 2012 Dec; 5(12):2376-82. PubMed ID: 23109490 [TBL] [Abstract][Full Text] [Related]
15. Improved lithium storage properties of electrospun TiO2 with tunable morphology: from porous anatase to necklace rutile. Yang Y; Wang H; Zhou Q; Kong M; Ye H; Yang G Nanoscale; 2013 Nov; 5(21):10267-74. PubMed ID: 24056926 [TBL] [Abstract][Full Text] [Related]
16. Facile fabrication of anatase TiO2 microspheres on solid substrates and surface crystal facet transformation from {001} to {101}. Zhang H; Liu P; Li F; Liu H; Wang Y; Zhang S; Guo M; Cheng H; Zhao H Chemistry; 2011 May; 17(21):5949-57. PubMed ID: 21480403 [TBL] [Abstract][Full Text] [Related]
17. Ionic liquid templated porous nano-TiO2 particles for the selective isolation of cytochrome c. Meng H; Chen XW; Wang JH Nanotechnology; 2010 Sep; 21(38):385704. PubMed ID: 20798466 [TBL] [Abstract][Full Text] [Related]
18. Self-assembled TiO₂ with increased photoelectron production, and improved conduction and transfer: enhancing photovoltaic performance of dye-sensitized solar cells. Ahmed S; Du Pasquier A; Birnie DP; Asefa T ACS Appl Mater Interfaces; 2011 Aug; 3(8):3002-10. PubMed ID: 21714503 [TBL] [Abstract][Full Text] [Related]
19. Hydrothermal synthesis of ionic liquid [Bmim]OH-modified TiO2 nanoparticles with enhanced photocatalytic activity under visible light. Hu S; Wang A; Li X; Wang Y; Löwe H Chem Asian J; 2010 May; 5(5):1171-7. PubMed ID: 20379993 [TBL] [Abstract][Full Text] [Related]
20. Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries. bai Z; Ju Z; Guo C; Qian Y; Tang B; Xiong S Nanoscale; 2014 Mar; 6(6):3268-73. PubMed ID: 24509514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]