BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21848860)

  • 1. Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress.
    Gaudin AC; McClymont SA; Holmes BM; Lyons E; Raizada MN
    Plant Cell Environ; 2011 Dec; 34(12):2122-37. PubMed ID: 21848860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress.
    Gao K; Chen F; Yuan L; Zhang F; Mi G
    Plant Cell Environ; 2015 Apr; 38(4):740-50. PubMed ID: 25159094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of NO3- supply on lateral root growth in maize plants].
    Guo YF; Mi GH; Chen FJ; Zhang FS
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):90-6. PubMed ID: 15692184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel morphological response of maize (Zea mays) adult roots to heterogeneous nitrate supply revealed by a split-root experiment.
    Yu P; Li X; Yuan L; Li C
    Physiol Plant; 2014 Jan; 150(1):133-44. PubMed ID: 23724916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth, nitrogen uptake and flow in maize plants affected by root growth restriction.
    Xu L; Niu J; Li C; Zhang F
    J Integr Plant Biol; 2009 Jul; 51(7):689-97. PubMed ID: 19566647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.).
    Zhu J; Brown KM; Lynch JP
    Plant Cell Environ; 2010 May; 33(5):740-9. PubMed ID: 20519019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Root cap removal increases root penetration resistance in maize (Zea mays L).
    Iijima M; Higuchi T; Barlow PW; Bengough AG
    J Exp Bot; 2003 Sep; 54(390):2105-9. PubMed ID: 12885860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Root growth in response to nitrogen supply in Chinese maize hybrids released between 1973 and 2009.
    Wu Q; Chen F; Chen Y; Yuan L; Zhang F; Mi G
    Sci China Life Sci; 2011 Jul; 54(7):642-50. PubMed ID: 21748587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic adaptations to arsenic-induced oxidative stress in Zea mays and genotoxic effect of arsenic in root tips of Vicia faba and Zea mays.
    Duquesnoy I; Champeau GM; Evray G; Ledoigt G; Piquet-Pissaloux A
    C R Biol; 2010; 333(11-12):814-24. PubMed ID: 21146138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency.
    Li P; Zhuang Z; Cai H; Cheng S; Soomro AA; Liu Z; Gu R; Mi G; Yuan L; Chen F
    J Integr Plant Biol; 2016 Mar; 58(3):242-53. PubMed ID: 26269087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and genomic dissection of maize root development and architecture.
    Hochholdinger F; Tuberosa R
    Curr Opin Plant Biol; 2009 Apr; 12(2):172-7. PubMed ID: 19157956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of altered dosage of a mutant allele of Teosinte branched 1 (tb1-ref) on the root system of modern maize.
    Gaudin AC; McClymont SA; Soliman SS; Raizada MN
    BMC Genet; 2014 Feb; 15():23. PubMed ID: 24524734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Different methods of forming root systems in plants using maize and flax seedlings as examples].
    Ploshchinskaia ME
    Ontogenez; 2003; 34(5):358-64. PubMed ID: 14582228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral root elongation enhances nitrogen-use efficiency in maize genotypes at the seedling stage.
    Wang H; Wu Y; An T; Chen Y
    J Sci Food Agric; 2022 Sep; 102(12):5389-5398. PubMed ID: 35332536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and accumulation of copper by roots and shoots of maize (Zea mays L.).
    Liu DH; Jiang WS; Hou WQ
    J Environ Sci (China); 2001 Apr; 13(2):228-32. PubMed ID: 11590748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.).
    Wang M; Zou J; Duan X; Jiang W; Liu D
    Bioresour Technol; 2007 Jan; 98(1):82-8. PubMed ID: 16426846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.).
    Kidd PS; Llugany M; Poschenrieder C; Gunsé B; Barceló J
    J Exp Bot; 2001 Jun; 52(359):1339-52. PubMed ID: 11432953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance.
    Eapen D; Martínez-Guadarrama J; Hernández-Bruno O; Flores L; Nieto-Sotelo J; Cassab GI
    Plant Sci; 2017 Dec; 265():87-99. PubMed ID: 29223345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition.
    York LM; Lynch JP
    J Exp Bot; 2015 Sep; 66(18):5493-505. PubMed ID: 26041317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation.
    Taramino G; Sauer M; Stauffer JL; Multani D; Niu X; Sakai H; Hochholdinger F
    Plant J; 2007 May; 50(4):649-59. PubMed ID: 17425722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.