These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 2184897)
1. Iron-reductases in the yeast Saccharomyces cerevisiae. Lesuisse E; Crichton RR; Labbe P Biochim Biophys Acta; 1990 Apr; 1038(2):253-9. PubMed ID: 2184897 [TBL] [Abstract][Full Text] [Related]
2. Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae. Lesuisse E; Labbe P J Gen Microbiol; 1989 Feb; 135(2):257-63. PubMed ID: 11699493 [TBL] [Abstract][Full Text] [Related]
3. Ferric iron reduction and iron assimilation in Saccharomyces cerevisiae. Anderson GJ; Lesuisse E; Dancis A; Roman DG; Labbe P; Klausner RD J Inorg Biochem; 1992 Aug 15-Sep; 47(3-4):249-55. PubMed ID: 1431884 [TBL] [Abstract][Full Text] [Related]
4. The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. Yun CW; Bauler M; Moore RE; Klebba PE; Philpott CC J Biol Chem; 2001 Mar; 276(13):10218-23. PubMed ID: 11120744 [TBL] [Abstract][Full Text] [Related]
5. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction. Takeda K; Sato J; Goto K; Fujita T; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y Biometals; 2010 Aug; 23(4):727-37. PubMed ID: 20407804 [TBL] [Abstract][Full Text] [Related]
6. [Characterization of membrane-bound Fe(III)-EDTA reductase activities of the thermophilic gram-positive dissimilatory iron-reducing bacterium Thermoterrabacterium ferrireducens]. Gavrilov SN; Slobodkin AI; Robb FT; de Vries S Mikrobiologiia; 2007; 76(2):164-71. PubMed ID: 17583211 [TBL] [Abstract][Full Text] [Related]
7. Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae. Shi F; Kawai S; Mori S; Kono E; Murata K FEBS J; 2005 Jul; 272(13):3337-49. PubMed ID: 15978040 [TBL] [Abstract][Full Text] [Related]
8. NADH:Fe(III)-chelate reductase of maize roots is an active cytochrome b5 reductase. Sparla F; Bagnaresi P; Scagliarini S; Trost P FEBS Lett; 1997 Sep; 414(3):571-5. PubMed ID: 9323038 [TBL] [Abstract][Full Text] [Related]
9. Differential redox and electron-transfer properties of purified yeast, plant and human NADPH-cytochrome P-450 reductases highly modulate cytochrome P-450 activities. Louërat-Oriou B; Perret A; Pompon D Eur J Biochem; 1998 Dec; 258(3):1040-9. PubMed ID: 9990323 [TBL] [Abstract][Full Text] [Related]
10. Evidence for the Saccharomyces cerevisiae ferrireductase system being a multicomponent electron transport chain. Lesuisse E; Casteras-Simon M; Labbe P J Biol Chem; 1996 Jun; 271(23):13578-83. PubMed ID: 8662826 [TBL] [Abstract][Full Text] [Related]
11. Isolation and characterization of a soluble NADPH-dependent Fe(III) reductase from Geobacter sulfurreducens. Kaufmann F; Lovley DR J Bacteriol; 2001 Aug; 183(15):4468-76. PubMed ID: 11443080 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a novel NADH-specific, FAD-containing, soluble reductase with ferric citrate reductase activity from maize seedlings. Sparla F; Preger V; Pupillo P; Trost P Arch Biochem Biophys; 1999 Mar; 363(2):301-8. PubMed ID: 10068452 [TBL] [Abstract][Full Text] [Related]
14. Excretion of anthranilate and 3-hydroxyanthranilate by Saccharomyces cerevisiae: relationship to iron metabolism. Lesuisse E; Simon M; Klein R; Labbe P J Gen Microbiol; 1992 Jan; 138(1):85-9. PubMed ID: 1556559 [TBL] [Abstract][Full Text] [Related]
15. Direct oxidation of NADPH by submitochondrial particles from Saccharomyces cerevisiae. Djavadi FH; Moradi M; Djavadi-Ohaniance L Eur J Biochem; 1980 Jun; 107(2):501-4. PubMed ID: 6995121 [TBL] [Abstract][Full Text] [Related]
16. Purification and characterization of a rotenone-insensitive NADH:Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae. de Vries S; Grivell LA Eur J Biochem; 1988 Sep; 176(2):377-84. PubMed ID: 3138118 [TBL] [Abstract][Full Text] [Related]
17. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli. Miethke M; Hou J; Marahiel MA Biochemistry; 2011 Dec; 50(50):10951-64. PubMed ID: 22098718 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a membrane-bound NADH-dependent Fe(3+) reductase from the dissimilatory Fe(3+)-reducing bacterium Geobacter sulfurreducens. Magnuson TS; Hodges-Myerson AL; Lovley DR FEMS Microbiol Lett; 2000 Apr; 185(2):205-11. PubMed ID: 10754249 [TBL] [Abstract][Full Text] [Related]
19. Potential role for extracellular glutathione-dependent ferric reductase in utilization of environmental and host ferric compounds by Histoplasma capsulatum. Timmerman MM; Woods JP Infect Immun; 2001 Dec; 69(12):7671-8. PubMed ID: 11705947 [TBL] [Abstract][Full Text] [Related]
20. Enzymatic reduction of labile iron by organelles of the rat liver. Superior role of an NADH-dependent activity in the outer mitochondrial membrane. Pamp K; Kerkweg U; Korth HG; Homann F; Rauen U; Sustmann R; de Groot H; Petrat F Biochimie; 2008 Oct; 90(10):1591-601. PubMed ID: 18627785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]