These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 21849049)
1. BLProt: prediction of bioluminescent proteins based on support vector machine and relieff feature selection. Kandaswamy KK; Pugalenthi G; Hazrati MK; Kalies KU; Martinetz T BMC Bioinformatics; 2011 Aug; 12():345. PubMed ID: 21849049 [TBL] [Abstract][Full Text] [Related]
2. Recent Development of Computational Predicting Bioluminescent Proteins. Zhang D; Guan ZX; Zhang ZM; Li SH; Dao FY; Tang H; Lin H Curr Pharm Des; 2019; 25(40):4264-4273. PubMed ID: 31696804 [TBL] [Abstract][Full Text] [Related]
3. Prediction of bioluminescent proteins using auto covariance transformation of evolutional profiles. Zhao X; Li J; Huang Y; Ma Z; Yin M Int J Mol Sci; 2012; 13(3):3650-3660. PubMed ID: 22489173 [TBL] [Abstract][Full Text] [Related]
4. iBLP: An XGBoost-Based Predictor for Identifying Bioluminescent Proteins. Zhang D; Chen HD; Zulfiqar H; Yuan SS; Huang QL; Zhang ZY; Deng KJ Comput Math Methods Med; 2021; 2021():6664362. PubMed ID: 33505515 [TBL] [Abstract][Full Text] [Related]
5. Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology. Sharifian S; Homaei A; Hemmati R; Khajeh K J Photochem Photobiol B; 2017 Jul; 172():115-128. PubMed ID: 28549320 [TBL] [Abstract][Full Text] [Related]
6. Prediction of apoptosis protein locations with genetic algorithms and support vector machines through a new mode of pseudo amino acid composition. Kandaswamy KK; Pugalenthi G; Möller S; Hartmann E; Kalies KU; Suganthan PN; Martinetz T Protein Pept Lett; 2010 Dec; 17(12):1473-9. PubMed ID: 20666727 [TBL] [Abstract][Full Text] [Related]
7. Prediction of bioluminescent proteins by using sequence-derived features and lineage-specific scheme. Zhang J; Chai H; Yang G; Ma Z BMC Bioinformatics; 2017 Jun; 18(1):294. PubMed ID: 28583090 [TBL] [Abstract][Full Text] [Related]
8. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Lee HS; Hong H; Jung DC; Park S; Kim J Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281 [TBL] [Abstract][Full Text] [Related]
9. Identification of functionally diverse lipocalin proteins from sequence information using support vector machine. Pugalenthi G; Kandaswamy KK; Suganthan PN; Archunan G; Sowdhamini R Amino Acids; 2010 Aug; 39(3):777-83. PubMed ID: 20186553 [TBL] [Abstract][Full Text] [Related]
10. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data. Zhang Y; Deng Q; Liang W; Zou X Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989 [TBL] [Abstract][Full Text] [Related]
11. Seminal quality prediction using data mining methods. Sahoo AJ; Kumar Y Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862 [TBL] [Abstract][Full Text] [Related]
12. Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines. Li F; Zhao C; Xia Z; Wang Y; Zhou X; Li GZ BMC Complement Altern Med; 2012 Aug; 12():127. PubMed ID: 22898352 [TBL] [Abstract][Full Text] [Related]
13. Propensity scores for prediction and characterization of bioluminescent proteins from sequences. Huang HL PLoS One; 2014; 9(5):e97158. PubMed ID: 24828431 [TBL] [Abstract][Full Text] [Related]
14. Machine learning-based risk factor analysis and prevalence prediction of intestinal parasitic infections using epidemiological survey data. Zafar A; Attia Z; Tesfaye M; Walelign S; Wordofa M; Abera D; Desta K; Tsegaye A; Ay A; Taye B PLoS Negl Trop Dis; 2022 Jun; 16(6):e0010517. PubMed ID: 35700192 [TBL] [Abstract][Full Text] [Related]
15. Discriminating bioluminescent proteins by incorporating average chemical shift and evolutionary information into the general form of Chou's pseudo amino acid composition. Fan GL; Li QZ J Theor Biol; 2013 Oct; 334():45-51. PubMed ID: 23770403 [TBL] [Abstract][Full Text] [Related]
16. Prediction of RNA-binding amino acids from protein and RNA sequences. Choi S; Han K BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S7. PubMed ID: 22373313 [TBL] [Abstract][Full Text] [Related]
17. Machine-learning models for activity class prediction: A comparative study of feature selection and classification algorithms. Chong J; Tjurin P; Niemelä M; Jämsä T; Farrahi V Gait Posture; 2021 Sep; 89():45-53. PubMed ID: 34225240 [TBL] [Abstract][Full Text] [Related]
18. HMMPred: Accurate Prediction of DNA-Binding Proteins Based on HMM Profiles and XGBoost Feature Selection. Sang X; Xiao W; Zheng H; Yang Y; Liu T Comput Math Methods Med; 2020; 2020():1384749. PubMed ID: 32300371 [TBL] [Abstract][Full Text] [Related]
19. Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing. Su EC; Chang JM; Cheng CW; Sung TY; Hsu WL BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S13. PubMed ID: 23282098 [TBL] [Abstract][Full Text] [Related]
20. Computational identification of ubiquitylation sites from protein sequences. Tung CW; Ho SY BMC Bioinformatics; 2008 Jul; 9():310. PubMed ID: 18625080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]