BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 21849616)

  • 1. Stereotypical spatiotemporal activity patterns during slow-wave activity in the neocortex.
    Fucke T; Suchanek D; Nawrot MP; Seamari Y; Heck DH; Aertsen A; Boucsein C
    J Neurophysiol; 2011 Dec; 106(6):3035-44. PubMed ID: 21849616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep.
    Mölle M; Yeshenko O; Marshall L; Sara SJ; Born J
    J Neurophysiol; 2006 Jul; 96(1):62-70. PubMed ID: 16611848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of active states in local neocortical networks during slow sleep oscillation.
    Chauvette S; Volgushev M; Timofeev I
    Cereb Cortex; 2010 Nov; 20(11):2660-74. PubMed ID: 20200108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations [corrected].
    Volgushev M; Chauvette S; Mukovski M; Timofeev I
    J Neurosci; 2006 May; 26(21):5665-72. PubMed ID: 16723523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics.
    Komarov M; Krishnan G; Chauvette S; Rulkov N; Timofeev I; Bazhenov M
    J Comput Neurosci; 2018 Feb; 44(1):1-24. PubMed ID: 29230640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hippocampal sharp wave bursts coincide with neocortical "up-state" transitions.
    Battaglia FP; Sutherland GR; McNaughton BL
    Learn Mem; 2004; 11(6):697-704. PubMed ID: 15576887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of active and silent states in neocortical neurons from the field potential signal during slow-wave sleep.
    Mukovski M; Chauvette S; Timofeev I; Volgushev M
    Cereb Cortex; 2007 Feb; 17(2):400-14. PubMed ID: 16547348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep.
    Eschenko O; Magri C; Panzeri S; Sara SJ
    Cereb Cortex; 2012 Feb; 22(2):426-35. PubMed ID: 21670101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Late-spiking retrosplenial cortical neurons are not synchronized with neocortical slow waves in anesthetized mice.
    Mizuno H; Ikegaya Y
    Neurosci Res; 2024 Jun; 203():51-56. PubMed ID: 38224839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulating forebrain communications: Slow sinusoidal electric fields over frontal cortices dynamically modulate hippocampal activity and cortico-hippocampal interplay during slow-wave states.
    Greenberg A; Whitten TA; Dickson CT
    Neuroimage; 2016 Jun; 133():189-206. PubMed ID: 26947518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous and electrically modulated spatiotemporal dynamics of the neocortical slow oscillation and associated local fast activity.
    Greenberg A; Dickson CT
    Neuroimage; 2013 Dec; 83():782-94. PubMed ID: 23876244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow-wave sleep and the consolidation of long-term memory.
    Born J
    World J Biol Psychiatry; 2010 Jun; 11 Suppl 1():16-21. PubMed ID: 20509828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow-waves in the olfactory system: an olfactory perspective on cortical rhythms.
    Fontanini A; Bower JM
    Trends Neurosci; 2006 Aug; 29(8):429-37. PubMed ID: 16842864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active neocortical processes during quiescent sleep.
    Steriade M
    Arch Ital Biol; 2001 Feb; 139(1-2):37-51. PubMed ID: 11256186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infragranular layers lead information flow during slow oscillations according to information directionality indicators.
    Amigó JM; Monetti R; Tort-Colet N; Sanchez-Vives MV
    J Comput Neurosci; 2015 Aug; 39(1):53-62. PubMed ID: 25966805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The thalamic low-threshold Ca²⁺ potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks.
    Crunelli V; Errington AC; Hughes SW; Tóth TI
    Philos Trans A Math Phys Eng Sci; 2011 Oct; 369(1952):3820-39. PubMed ID: 21893530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine-scale mapping of cortical laminar activity during sleep slow oscillations using high-density linear silicon probes.
    Fiáth R; Raducanu BC; Musa S; Andrei A; Lopez CM; Welkenhuysen M; Ruther P; Aarts A; Ulbert I
    J Neurosci Methods; 2019 Mar; 316():58-70. PubMed ID: 30144495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crossmodal propagation of sensory-evoked and spontaneous activity in the rat neocortex.
    Takagaki K; Zhang C; Wu JY; Lippert MT
    Neurosci Lett; 2008 Feb; 431(3):191-6. PubMed ID: 18178313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo.
    Timofeev I; Grenier F; Steriade M
    J Physiol Paris; 2000; 94(5-6):343-55. PubMed ID: 11165905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations.
    Isomura Y; Sirota A; Ozen S; Montgomery S; Mizuseki K; Henze DA; Buzsáki G
    Neuron; 2006 Dec; 52(5):871-82. PubMed ID: 17145507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.