These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 21849616)
1. Stereotypical spatiotemporal activity patterns during slow-wave activity in the neocortex. Fucke T; Suchanek D; Nawrot MP; Seamari Y; Heck DH; Aertsen A; Boucsein C J Neurophysiol; 2011 Dec; 106(6):3035-44. PubMed ID: 21849616 [TBL] [Abstract][Full Text] [Related]
2. Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep. Mölle M; Yeshenko O; Marshall L; Sara SJ; Born J J Neurophysiol; 2006 Jul; 96(1):62-70. PubMed ID: 16611848 [TBL] [Abstract][Full Text] [Related]
3. Origin of active states in local neocortical networks during slow sleep oscillation. Chauvette S; Volgushev M; Timofeev I Cereb Cortex; 2010 Nov; 20(11):2660-74. PubMed ID: 20200108 [TBL] [Abstract][Full Text] [Related]
4. Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations [corrected]. Volgushev M; Chauvette S; Mukovski M; Timofeev I J Neurosci; 2006 May; 26(21):5665-72. PubMed ID: 16723523 [TBL] [Abstract][Full Text] [Related]
5. New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics. Komarov M; Krishnan G; Chauvette S; Rulkov N; Timofeev I; Bazhenov M J Comput Neurosci; 2018 Feb; 44(1):1-24. PubMed ID: 29230640 [TBL] [Abstract][Full Text] [Related]
7. Detection of active and silent states in neocortical neurons from the field potential signal during slow-wave sleep. Mukovski M; Chauvette S; Timofeev I; Volgushev M Cereb Cortex; 2007 Feb; 17(2):400-14. PubMed ID: 16547348 [TBL] [Abstract][Full Text] [Related]
8. Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep. Eschenko O; Magri C; Panzeri S; Sara SJ Cereb Cortex; 2012 Feb; 22(2):426-35. PubMed ID: 21670101 [TBL] [Abstract][Full Text] [Related]
9. Late-spiking retrosplenial cortical neurons are not synchronized with neocortical slow waves in anesthetized mice. Mizuno H; Ikegaya Y Neurosci Res; 2024 Jun; 203():51-56. PubMed ID: 38224839 [TBL] [Abstract][Full Text] [Related]
10. Stimulating forebrain communications: Slow sinusoidal electric fields over frontal cortices dynamically modulate hippocampal activity and cortico-hippocampal interplay during slow-wave states. Greenberg A; Whitten TA; Dickson CT Neuroimage; 2016 Jun; 133():189-206. PubMed ID: 26947518 [TBL] [Abstract][Full Text] [Related]
11. Spontaneous and electrically modulated spatiotemporal dynamics of the neocortical slow oscillation and associated local fast activity. Greenberg A; Dickson CT Neuroimage; 2013 Dec; 83():782-94. PubMed ID: 23876244 [TBL] [Abstract][Full Text] [Related]
12. Slow-wave sleep and the consolidation of long-term memory. Born J World J Biol Psychiatry; 2010 Jun; 11 Suppl 1():16-21. PubMed ID: 20509828 [TBL] [Abstract][Full Text] [Related]
13. Slow-waves in the olfactory system: an olfactory perspective on cortical rhythms. Fontanini A; Bower JM Trends Neurosci; 2006 Aug; 29(8):429-37. PubMed ID: 16842864 [TBL] [Abstract][Full Text] [Related]
14. Active neocortical processes during quiescent sleep. Steriade M Arch Ital Biol; 2001 Feb; 139(1-2):37-51. PubMed ID: 11256186 [TBL] [Abstract][Full Text] [Related]
15. Infragranular layers lead information flow during slow oscillations according to information directionality indicators. Amigó JM; Monetti R; Tort-Colet N; Sanchez-Vives MV J Comput Neurosci; 2015 Aug; 39(1):53-62. PubMed ID: 25966805 [TBL] [Abstract][Full Text] [Related]
16. The thalamic low-threshold Ca²⁺ potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks. Crunelli V; Errington AC; Hughes SW; Tóth TI Philos Trans A Math Phys Eng Sci; 2011 Oct; 369(1952):3820-39. PubMed ID: 21893530 [TBL] [Abstract][Full Text] [Related]
17. Fine-scale mapping of cortical laminar activity during sleep slow oscillations using high-density linear silicon probes. Fiáth R; Raducanu BC; Musa S; Andrei A; Lopez CM; Welkenhuysen M; Ruther P; Aarts A; Ulbert I J Neurosci Methods; 2019 Mar; 316():58-70. PubMed ID: 30144495 [TBL] [Abstract][Full Text] [Related]
18. Crossmodal propagation of sensory-evoked and spontaneous activity in the rat neocortex. Takagaki K; Zhang C; Wu JY; Lippert MT Neurosci Lett; 2008 Feb; 431(3):191-6. PubMed ID: 18178313 [TBL] [Abstract][Full Text] [Related]
19. Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo. Timofeev I; Grenier F; Steriade M J Physiol Paris; 2000; 94(5-6):343-55. PubMed ID: 11165905 [TBL] [Abstract][Full Text] [Related]
20. Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Isomura Y; Sirota A; Ozen S; Montgomery S; Mizuseki K; Henze DA; Buzsáki G Neuron; 2006 Dec; 52(5):871-82. PubMed ID: 17145507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]