These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 21850160)

  • 21. Analysis on the alterations of lens proteins by Vitex negundo in selenite cataract models.
    Rooban BN; Sasikala V; Sahasranamam V; Abraham A
    Mol Vis; 2011; 17():1239-48. PubMed ID: 21617749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ocimum sanctum modulates selenite-induced cataractogenic changes and prevents rat lens opacification.
    Gupta SK; Srivastava S; Trivedi D; Joshi S; Halder N
    Curr Eye Res; 2005 Jul; 30(7):583-91. PubMed ID: 16020293
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Kim J; Choung SY
    Mol Vis; 2017; 23():638-648. PubMed ID: 28943754
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium-activated proteolysis in the lens nucleus during selenite cataractogenesis.
    David LL; Shearer TR
    Invest Ophthalmol Vis Sci; 1984 Nov; 25(11):1275-83. PubMed ID: 6386740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Efficacy of catalin eyed drops in age-related cataract agents].
    Polunin GS; Makarova IA; Bubnova IA
    Vestn Oftalmol; 2010; 126(1):36-9. PubMed ID: 20645574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystallins from rat lens are especially susceptible to calpain-induced light scattering compared to other species.
    Shearer TR; Shih M; Mizuno T; David LL
    Curr Eye Res; 1996 Aug; 15(8):860-8. PubMed ID: 8921229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alterations in the lenticular protein profile in experimental selenite-induced cataractogenesis and prevention by ellagic acid.
    Sakthivel M; Geraldine P; Thomas PA
    Graefes Arch Clin Exp Ophthalmol; 2011 Aug; 249(8):1201-10. PubMed ID: 21455778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. alpha-Crystallin chaperone activity is reduced by calpain II in vitro and in selenite cataract.
    Kelley MJ; David LL; Iwasaki N; Wright J; Shearer TR
    J Biol Chem; 1993 Sep; 268(25):18844-9. PubMed ID: 8395520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mass measurements of C-terminally truncated alpha-crystallins from two-dimensional gels identify Lp82 as a major endopeptidase in rat lens.
    Ueda Y; Fukiage C; Shih M; Shearer TR; David LL
    Mol Cell Proteomics; 2002 May; 1(5):357-65. PubMed ID: 12118077
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prevention and reversal of selenite-induced cataracts by N-acetylcysteine amide in Wistar rats.
    Maddirala Y; Tobwala S; Karacal H; Ercal N
    BMC Ophthalmol; 2017 Apr; 17(1):54. PubMed ID: 28446133
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cysteine protease inhibitor E64 reduces the rate of formation of selenite cataract in the whole animal.
    Azuma M; David LL; Shearer TR
    Curr Eye Res; 1991 Jul; 10(7):657-66. PubMed ID: 1914502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trigonella foenum-graecum (Fenugreek) protects against selenite-induced oxidative stress in experimental cataractogenesis.
    Gupta SK; Kalaiselvan V; Srivastava S; Saxena R; Agrawal SS
    Biol Trace Elem Res; 2010 Sep; 136(3):258-68. PubMed ID: 19823776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Possible Positive Mechanisms of Pirenoxine in Cataract Formation.
    Upaphong P; Thonusin C; Choovuthayakorn J; Chattipakorn N; Chattipakorn SC
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for apoptosis in the selenite rat model of cataract.
    Tamada Y; Fukiage C; Nakamura Y; Azuma M; Kim YH; Shearer TR
    Biochem Biophys Res Commun; 2000 Aug; 275(2):300-6. PubMed ID: 10964662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immunochemical detection of glycated beta- and gamma-crystallins in lens and their circulating autoantibodies (IgG) in streptozocin induced diabetic rat.
    Ranjan M; Nayak S; Rao BS
    Mol Vis; 2006 Sep; 12():1077-85. PubMed ID: 17093392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatty acids influence the efficacy of lutein in the modulation of α-crystallin chaperone function: Evidence from selenite induced cataract rat model.
    Padmanabha S; Vallikannan B
    Biochem Biophys Res Commun; 2020 Aug; 529(2):425-431. PubMed ID: 32703446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nuclear cataract and light scattering in cultured lenses from guinea pig and rabbit.
    Fukiage C; Azuma M; Nakamura Y; Tamada Y; Shearer TR
    Curr Eye Res; 1998 Jun; 17(6):623-35. PubMed ID: 9663852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of acetyl-L-carnitine on lenticular calpain activity in prevention of selenite-induced cataractogenesis.
    Elanchezhian R; Sakthivel M; Geraldine P; Thomas PA
    Exp Eye Res; 2009 May; 88(5):938-44. PubMed ID: 19150348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteolysis by calpain is an underlying mechanism for formation of sugar cataract in rat lens.
    Azuma M; Inoue E; Oka T; Shearer TR
    Curr Eye Res; 1995 Jan; 14(1):27-34. PubMed ID: 7720403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemical changes in selenite cataract model measured by high-resolution MAS H NMR spectroscopy.
    Fris M; Tessem MB; Saether O; Midelfart A
    Acta Ophthalmol Scand; 2006 Oct; 84(5):684-92. PubMed ID: 16965502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.