BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21850224)

  • 1. Optogenetic manipulation of cerebellar Purkinje cell activity in vivo.
    Tsubota T; Ohashi Y; Tamura K; Sato A; Miyashita Y
    PLoS One; 2011; 6(8):e22400. PubMed ID: 21850224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic inhibition of Purkinje cell activity reveals cerebellar control of blood pressure during postural alterations in anesthetized rats.
    Tsubota T; Ohashi Y; Tamura K; Miyashita Y
    Neuroscience; 2012 May; 210():137-44. PubMed ID: 22441034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective Optogenetic Control of Purkinje Cells in Monkey Cerebellum.
    El-Shamayleh Y; Kojima Y; Soetedjo R; Horwitz GD
    Neuron; 2017 Jul; 95(1):51-62.e4. PubMed ID: 28648497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bidirectional modulation of deep cerebellar nuclear cells revealed by optogenetic manipulation of inhibitory inputs from Purkinje cells.
    Han VZ; Magnus G; Zhang Y; Wei AD; Turner EE
    Neuroscience; 2014 Sep; 277():250-66. PubMed ID: 25020121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex.
    Bower JM; Woolston DC
    J Neurophysiol; 1983 Mar; 49(3):745-66. PubMed ID: 6300353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective transgene expression in cerebellar Purkinje cells and granule cells using adeno-associated viruses together with specific promoters.
    Kim Y; Kim T; Rhee JK; Lee D; Tanaka-Yamamoto K; Yamamoto Y
    Brain Res; 2015 Sep; 1620():1-16. PubMed ID: 25988836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic modulation and multi-electrode analysis of cerebellar networks in vivo.
    Kruse W; Krause M; Aarse J; Mark MD; Manahan-Vaughan D; Herlitze S
    PLoS One; 2014; 9(8):e105589. PubMed ID: 25144735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic control of motor coordination by Gi/o protein-coupled vertebrate rhodopsin in cerebellar Purkinje cells.
    Gutierrez DV; Mark MD; Masseck O; Maejima T; Kuckelsberg D; Hyde RA; Krause M; Kruse W; Herlitze S
    J Biol Chem; 2011 Jul; 286(29):25848-58. PubMed ID: 21628464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics.
    Ji G; Neugebauer V
    Mol Brain; 2012 Oct; 5():36. PubMed ID: 23044043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photostimulation of channelrhodopsin-2 expressing ventrolateral medullary neurons increases sympathetic nerve activity and blood pressure in rats.
    Abbott SB; Stornetta RL; Socolovsky CS; West GH; Guyenet PG
    J Physiol; 2009 Dec; 587(Pt 23):5613-31. PubMed ID: 19822543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebellar Nuclei Neurons Show Only Small Excitatory Responses to Optogenetic Olivary Stimulation in Transgenic Mice: In Vivo and In Vitro Studies.
    Lu H; Yang B; Jaeger D
    Front Neural Circuits; 2016; 10():21. PubMed ID: 27047344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing Optogenetic Activation of Purkinje Cell Axons to Investigate the Purkinje Cell - DCN Synapse.
    Gruver KM; Watt AJ
    Front Synaptic Neurosci; 2019; 11():31. PubMed ID: 31824291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purkinje Cell Collaterals Enable Output Signals from the Cerebellar Cortex to Feed Back to Purkinje Cells and Interneurons.
    Witter L; Rudolph S; Pressler RT; Lahlaf SI; Regehr WG
    Neuron; 2016 Jul; 91(2):312-9. PubMed ID: 27346533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-Term Plasticity Combines with Excitation-Inhibition Balance to Expand Cerebellar Purkinje Cell Dynamic Range.
    Grangeray-Vilmint A; Valera AM; Kumar A; Isope P
    J Neurosci; 2018 May; 38(22):5153-5167. PubMed ID: 29720550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebellar Processing Common to Delay and Trace Eyelid Conditioning.
    Halverson HE; Khilkevich A; Mauk MD
    J Neurosci; 2018 Aug; 38(33):7221-7236. PubMed ID: 30012691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photostimulation of retrotrapezoid nucleus phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats.
    Abbott SB; Stornetta RL; Fortuna MG; Depuy SD; West GH; Harris TE; Guyenet PG
    J Neurosci; 2009 May; 29(18):5806-19. PubMed ID: 19420248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of synchronous activity in cerebellar Purkinje cells.
    Wise AK; Cerminara NL; Marple-Horvat DE; Apps R
    J Physiol; 2010 Jul; 588(Pt 13):2373-90. PubMed ID: 20442262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebellar cortical output encodes temporal aspects of rhythmic licking movements and is necessary for normal licking frequency.
    Bryant JL; Boughter JD; Gong S; LeDoux MS; Heck DH
    Eur J Neurosci; 2010 Jul; 32(1):41-52. PubMed ID: 20597972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetics in the cerebellum: Purkinje cell-specific approaches for understanding local cerebellar functions.
    Tsubota T; Ohashi Y; Tamura K
    Behav Brain Res; 2013 Oct; 255():26-34. PubMed ID: 23623886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic manipulation of anatomical re-entry by light-guided generation of a reversible local conduction block.
    Watanabe M; Feola I; Majumder R; Jangsangthong W; Teplenin AS; Ypey DL; Schalij MJ; Zeppenfeld K; de Vries AA; Pijnappels DA
    Cardiovasc Res; 2017 Mar; 113(3):354-366. PubMed ID: 28395022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.