These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21850303)

  • 1. Synthesis of cuprous oxide nanocomposite electrodes by room-temperature chemical partial reduction.
    Park KS; Seo SD; Jin YH; Lee SH; Shim HW; Lee DH; Kim DW
    Dalton Trans; 2011 Oct; 40(37):9498-503. PubMed ID: 21850303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced cycling performance of an Fe0/Fe3O4 nanocomposite electrode for lithium-ion batteries.
    Lee GH; Park JG; Sung YM; Chung KY; Cho WI; Kim DW
    Nanotechnology; 2009 Jul; 20(29):295205. PubMed ID: 19567958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor.
    Zhang X; Wang G; Zhang W; Wei Y; Fang B
    Biosens Bioelectron; 2009 Jul; 24(11):3395-8. PubMed ID: 19473828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facet-dependent and au nanocrystal-enhanced electrical and photocatalytic properties of Au-Cu2O core-shell heterostructures.
    Kuo CH; Yang YC; Gwo S; Huang MH
    J Am Chem Soc; 2011 Feb; 133(4):1052-7. PubMed ID: 21174406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cu₂O-Au nanocomposites for enzyme-free glucose sensing with enhanced performances.
    Hu Q; Wang F; Fang Z; Liu X
    Colloids Surf B Biointerfaces; 2012 Jun; 95():279-83. PubMed ID: 22424826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries.
    Cao FF; Xin S; Guo YG; Wan LJ
    Phys Chem Chem Phys; 2011 Feb; 13(6):2014-20. PubMed ID: 21203647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of cuprous oxide electrodes composed of 2D single-crystalline dendritic nanosheets.
    Jang HS; Kim SJ; Choi KS
    Small; 2010 Oct; 6(19):2183-90. PubMed ID: 20827679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct electrocatalytic oxidation of nitric oxide and reduction of hydrogen peroxide based on alpha-Fe2O3 nanoparticles-chitosan composite.
    Zhang L; Ni Y; Wang X; Zhao G
    Talanta; 2010 Jun; 82(1):196-201. PubMed ID: 20685456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrications of hollow nanocubes of Cu(2)O and Cu via reductive self-assembly of CuO nanocrystals.
    Teo JJ; Chang Y; Zeng HC
    Langmuir; 2006 Aug; 22(17):7369-77. PubMed ID: 16893240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cuprous oxide nanoshells with geometrically tunable optical properties.
    Zhang L; Wang H
    ACS Nano; 2011 Apr; 5(4):3257-67. PubMed ID: 21351790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Shell-Core Cu(2)O-Cu Nanocomposite Particles and Cu Nanoparticles in a New Microemulsion System.
    Wang CY; Zhou Y; Chen ZY; Cheng B; Liu HJ; Mo X
    J Colloid Interface Sci; 1999 Dec; 220(2):468-470. PubMed ID: 10607468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors.
    Ye JS; Cui HF; Liu X; Lim TM; Zhang WD; Sheu FS
    Small; 2005 May; 1(5):560-5. PubMed ID: 17193486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A facile synthesis of Cu(2)O/SiO(2) and Cu/SiO(2) core-shell octahedral nanocomposites.
    Su X; Zhao J; Zhao X; Guo Y; Zhu Y; Wang Z
    Nanotechnology; 2008 Sep; 19(36):365610. PubMed ID: 21828881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres.
    Chang Y; Teo JJ; Zeng HC
    Langmuir; 2005 Feb; 21(3):1074-9. PubMed ID: 15667192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphologies and microstructures of nano-sized Cu(2)O particles using a cetyltrimethylammonium template.
    Zhang H; Shen C; Chen S; Xu Z; Liu F; Li J; Gao H
    Nanotechnology; 2005 Feb; 16(2):267-72. PubMed ID: 21727434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ternary Cu2O-Cu-CuO nanocomposite: a catalyst with intriguing activity.
    Sasmal AK; Dutta S; Pal T
    Dalton Trans; 2016 Feb; 45(7):3139-50. PubMed ID: 26776952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sensitive amperometric sensor for hydrazine and hydrogen peroxide based on palladium nanoparticles/onion-like mesoporous carbon vesicle.
    Bo X; Bai J; Ju J; Guo L
    Anal Chim Acta; 2010 Aug; 675(1):29-35. PubMed ID: 20708112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles.
    Prucek R; Tuček J; Kilianová M; Panáček A; Kvítek L; Filip J; Kolář M; Tománková K; Zbořil R
    Biomaterials; 2011 Jul; 32(21):4704-13. PubMed ID: 21507482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of nanocolloidal particles gamma-Fe2O3 at charged interfaces. Part 2. Electrochemical conversion. Role of the electrode material.
    Lucas IT; Dubois E; Chevalet J; Durand-Vidal S; Joiret S
    Phys Chem Chem Phys; 2008 Jun; 10(22):3274-86. PubMed ID: 18500405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ growth of copper sulfide nanoparticles on ordered mesoporous carbon and their application as nonenzymatic amperometric sensor of hydrogen peroxide.
    Bo X; Bai J; Wang L; Guo L
    Talanta; 2010 Apr; 81(1-2):339-45. PubMed ID: 20188929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.