These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 21850303)

  • 41. Fabrication of a biocompatible and conductive platform based on a single-stranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis.
    Zhang Q; Qiao Y; Hao F; Zhang L; Wu S; Li Y; Li J; Song XM
    Chemistry; 2010 Jul; 16(27):8133-9. PubMed ID: 20583058
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Porous redox-active Cu2O-SiO2 nanostructured film: preparation, characterization and application for a label-free amperometric ferritin immunosensor.
    Yang X; Yuan R; Chai Y; Zhuo Y; Hong C; Liu Z; Su H
    Talanta; 2009 Apr; 78(2):596-601. PubMed ID: 19203630
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films.
    Li CW; Kanan MW
    J Am Chem Soc; 2012 May; 134(17):7231-4. PubMed ID: 22506621
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization and electrochemical properties of molecular icosanuclear and bidimensional hexanuclear Cu(II) azido polyoxometalates.
    Pichon C; Mialane P; Dolbecq A; Marrot J; Rivière E; Keita B; Nadjo L; Sécheresse F
    Inorg Chem; 2007 Jun; 46(13):5292-301. PubMed ID: 17511448
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unusual physical and chemical properties of Cu in Ce(1-x)Cu(x)O(2) oxides.
    Wang X; Rodriguez JA; Hanson JC; Gamarra D; Martínez-Arias A; Fernandez-García M
    J Phys Chem B; 2005 Oct; 109(42):19595-603. PubMed ID: 16853534
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct growth of single-crystal Pt nanowires on Sn@CNT Nanocable: 3D electrodes for highly active electrocatalysts.
    Sun S; Zhang G; Geng D; Chen Y; Banis MN; Li R; Cai M; Sun X
    Chemistry; 2010 Jan; 16(3):829-35. PubMed ID: 20024993
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Large-area aligned branched Cu(2)S nanostructure arrays: room-temperature synthesis and growth mechanism.
    Lai C; Wu Q; Chen J; Wen L; Ren S
    Nanotechnology; 2010 May; 21(21):215602. PubMed ID: 20431195
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A biofuel cell with electrochemically switchable and tunable power output.
    Katz E; Willner I
    J Am Chem Soc; 2003 Jun; 125(22):6803-13. PubMed ID: 12769592
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of size-tunable anatase TiO₂ nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride-graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance.
    Qiu Y; Yan K; Yang S; Jin L; Deng H; Li W
    ACS Nano; 2010 Nov; 4(11):6515-26. PubMed ID: 21038869
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage.
    Wang Z; Su F; Madhavi S; Lou XW
    Nanoscale; 2011 Apr; 3(4):1618-23. PubMed ID: 21286653
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Destruction of SO2 on Au and Cu nanoparticles dispersed on MgO(100) and CeO2(111).
    Rodriguez JA; Liu P; Pérez M; Liu G; Hrbek J
    J Phys Chem A; 2010 Mar; 114(11):3802-10. PubMed ID: 19634883
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tailored vapor-phase growth of Cu(x)O-TiO2 (x = 1, 2) nanomaterials decorated with Au particles.
    Barreca D; Carraro G; Gasparotto A; Maccato C; Lebedev OI; Parfenova A; Turner S; Tondello E; Van Tendeloo G
    Langmuir; 2011 May; 27(10):6409-17. PubMed ID: 21517025
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation and properties of inhalable nanocomposite particles: effects of the temperature at a spray-dryer inlet upon the properties of particles.
    Tomoda K; Ohkoshi T; Kawai Y; Nishiwaki M; Nakajima T; Makino K
    Colloids Surf B Biointerfaces; 2008 Feb; 61(2):138-44. PubMed ID: 17890065
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation and properties of inhalable nanocomposite particles: effects of the size, weight ratio of the primary nanoparticles in nanocomposite particles and temperature at a spray-dryer inlet upon properties of nanocomposite particles.
    Tomoda K; Ohkoshi T; Nakajima T; Makino K
    Colloids Surf B Biointerfaces; 2008 Jun; 64(1):70-6. PubMed ID: 18343097
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An inward replacement/etching route to synthesize double-walled Cu7S4 nanoboxes and their enhanced performances in ammonia gas sensing.
    Zhang W; Chen Z; Yang Z
    Phys Chem Chem Phys; 2009 Aug; 11(29):6263-8. PubMed ID: 19606338
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Silver oxide nanowalls grown on Cu substrate as an enzymeless glucose sensor.
    Fang B; Gu A; Wang G; Wang W; Feng Y; Zhang C; Zhang X
    ACS Appl Mater Interfaces; 2009 Dec; 1(12):2829-34. PubMed ID: 20356163
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity.
    Deng MJ; Huang FL; Sun IW; Tsai WT; Chang JK
    Nanotechnology; 2009 Apr; 20(17):175602. PubMed ID: 19420595
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Controlled synthesis, characterization, and catalytic properties of Mn(2)O(3) and Mn(3)O(4) nanoparticles supported on mesoporous silica SBA-15.
    Han YF; Chen F; Zhong Z; Ramesh K; Chen L; Widjaja E
    J Phys Chem B; 2006 Dec; 110(48):24450-6. PubMed ID: 17134200
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potential controlled electrochemical conversion of AgCN and Cu(OH)2 nanofibers into metal nanoparticles, nanoprisms, nanofibers, and porous networks.
    Bourret GR; Lennox RB
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3745-58. PubMed ID: 21121642
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reactivity of nanocolloidal particles gamma-Fe2O3 at the charged interfaces. Part 1. The approach of particles to an electrode.
    Lucas IT; Dubois E; Chevalet J; Durand-Vidal S
    Phys Chem Chem Phys; 2008 Jun; 10(22):3263-73. PubMed ID: 18500404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.