These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 21850550)

  • 1. Characterization of a Fricke dosimeter at high energy photon and electron beams used in radiotherapy.
    Moussous O; Khoudri S; Benguerba M
    Australas Phys Eng Sci Med; 2011 Dec; 34(4):523-8. PubMed ID: 21850550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of the ferrous sulphate dosimeter for intercomparison of absorbed dose from electron beams.
    Chen WL; Chang SC
    Med Phys; 1984; 11(3):335-7. PubMed ID: 6429501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility study of the Fricke chemical dosimeter as an independent dosimetric system for the small animal radiation research platform (SARRP).
    Muñoz Arango E; Pickler A; Mantuano A; Salata C; de Almeida CE
    Phys Med; 2020 Mar; 71():168-175. PubMed ID: 32163885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of PENELOPE Monte Carlo dose calculations with Fricke dosimeter and ionization chamber measurements in heterogeneous phantoms (18 MeV electron and 12 MV photon beams).
    Blazy L; Baltes D; Bordy JM; Cutarella D; Delaunay F; Gouriou J; Leroy E; Ostrowsky A; Beaumont S
    Phys Med Biol; 2006 Nov; 51(22):5951-65. PubMed ID: 17068376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fricke gel dosimeter with improved sensitivity for low-dose-level measurements.
    Valente M; Molina W; Silva LC; Figueroa R; Malano F; Pérez P; Santibañez M; Vedelago J
    J Appl Clin Med Phys; 2016 Jul; 17(4):402-417. PubMed ID: 27455471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of ferrous sulfate (Fricke) and ionization dosimetry for high-energy photon and electron beams.
    Kwa W; Kornelsen RO
    Med Phys; 1990; 17(4):602-6. PubMed ID: 2215405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion recombination correction for very high dose-per-pulse high-energy electron beams.
    Di Martino F; Giannelli M; Traino AC; Lazzeri M
    Med Phys; 2005 Jul; 32(7):2204-10. PubMed ID: 16121574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Al2O3:C optically stimulated luminescence (OSL) dosimeters for passive dosimetry of high-energy photon and electron beams in radiotherapy.
    Yukihara EG; Mardirossian G; Mirzasadeghi M; Guduru S; Ahmad S
    Med Phys; 2008 Jan; 35(1):260-9. PubMed ID: 18293581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The calibration of plane parallel ionisation chambers for the measurement of absorbed dose in electron beams of low to medium energies. Part 1: the NACP chamber.
    Cross P; Freeman N
    Australas Phys Eng Sci Med; 1996 Sep; 19(3):197-200. PubMed ID: 8936730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The response of a radiophotoluminescent glass dosimeter in megavoltage photon and electron beams.
    Araki F; Ohno T
    Med Phys; 2014 Dec; 41(12):122102. PubMed ID: 25471975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Fricke dosimeter as an absorbed dose to water primary standard for Ir-192 brachytherapy.
    El Gamal I; Cojocaru C; Mainegra-Hing E; McEwen M
    Phys Med Biol; 2015 Jun; 60(11):4481-95. PubMed ID: 25988983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How water equivalent are water-equivalent solid materials for output calibration of photon and electron beams?
    Tello VM; Tailor RC; Hanson WF
    Med Phys; 1995 Jul; 22(7):1177-89. PubMed ID: 7565393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy and dose rate dependence of BANG-2 polymer-gel dosimeter.
    Novotny J; Spevacek V; Dvorak P; Novotny J; Cechak T
    Med Phys; 2001 Nov; 28(11):2379-86. PubMed ID: 11764046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct measurement of electron beam quality conversion factors using water calorimetry.
    Renaud J; Sarfehnia A; Marchant K; McEwen M; Ross C; Seuntjens J
    Med Phys; 2015 Nov; 42(11):6357-68. PubMed ID: 26520727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy correction factors of LiF powder TLDs irradiated in high-energy electron beams and applied to mailed dosimetry for quality assurance networks.
    Marre D; Ferreira IH; Bridier A; Björeland A; Svensson H; Dutreix A; Chavaudra J
    Phys Med Biol; 2000 Dec; 45(12):3657-74. PubMed ID: 11131191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The energy dependence of lithium formate EPR dosimeters for clinical electron beams.
    Malinen E; Waldeland E; Hole EO; Sagstuen E
    Phys Med Biol; 2007 Jul; 52(14):4361-9. PubMed ID: 17664613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wall-correction and absorbed-dose conversion factors for Fricke dosimetry: Monte Carlo calculations and measurements.
    Ma CM; Rogers DW; Shortt KR; Ross CK; Nahum AE; Bielajew AF
    Med Phys; 1993; 20(2 Pt 1):283-92. PubMed ID: 8497212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dosimetric properties of radiophotoluminescent glass rod detector in high-energy photon beams from a linear accelerator and cyber-knife.
    Arakia F; Moribe N; Shimonobou T; Yamashita Y
    Med Phys; 2004 Jul; 31(7):1980-6. PubMed ID: 15305450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The characterization of the Advanced Markus ionization chamber for use in reference electron dosimetry in the UK.
    Pearce J; Thomas R; Dusautoy A
    Phys Med Biol; 2006 Feb; 51(3):473-83. PubMed ID: 16424576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dosimetric characterization of optically stimulated luminescence dosimeter with therapeutic photon beams for use in clinical radiotherapy measurements.
    Ponmalar R; Manickam R; Ganesh KM; Saminathan S; Raman A; Godson HF
    J Cancer Res Ther; 2017; 13(2):304-312. PubMed ID: 28643752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.