These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21851059)

  • 1. Controlling the motion and placement of micrometer-sized metal particles using patterned polymer brush surfaces.
    Dunderdale GJ; Howse JR; Fairclough JP
    Langmuir; 2011 Oct; 27(19):11801-5. PubMed ID: 21851059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-dependent control of particle motion through surface interactions with patterned polymer brush surfaces.
    Dunderdale G; Howse J; Fairclough P
    Langmuir; 2012 Sep; 28(36):12955-61. PubMed ID: 22891947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of patterned poly(methyl methacrylate) brushes under various structures upon solvent immersion.
    Chen JK; Hsieh CY; Huang CF; Li PM
    J Colloid Interface Sci; 2009 Oct; 338(2):428-34. PubMed ID: 19592006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible pH-controlled switching of poly(methacrylic acid) grafts for functional biointerfaces.
    Santonicola MG; de Groot GW; Memesa M; Meszyńska A; Vancso GJ
    Langmuir; 2010 Nov; 26(22):17513-9. PubMed ID: 20932041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterned poly(2-hydroxyethyl methacrylate) brushes on silicon surfaces behave as "tentacles" to capture ferritin from aqueous solution.
    Chen JK; Chen ZY; Lin HC; Hong PD; Chang FC
    ACS Appl Mater Interfaces; 2009 Jul; 1(7):1525-32. PubMed ID: 20355956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brownian diffusion close to a polymer brush.
    Filippidi E; Michailidou V; Loppinet B; Rühe J; Fytas G
    Langmuir; 2007 Apr; 23(9):5139-42. PubMed ID: 17367177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of robust raspberry-like particles using polymer brushes.
    Puretskiy N; Ionov L
    Langmuir; 2011 Mar; 27(6):3006-11. PubMed ID: 21314161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of brush thickness and solvent composition on the friction force response of poly(2-(methacryloyloxy)ethylphosphorylcholine) brushes.
    Zhang Z; Morse AJ; Armes SP; Lewis AL; Geoghegan M; Leggett GJ
    Langmuir; 2011 Mar; 27(6):2514-21. PubMed ID: 21319847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations.
    Iwata R; Suk-In P; Hoven VP; Takahara A; Akiyoshi K; Iwasaki Y
    Biomacromolecules; 2004; 5(6):2308-14. PubMed ID: 15530046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilized metal affinity chromatography using open tubular capillary for phosphoprotein analysis: comparison between polymer brush coating and surface functionalization.
    El Idrissi K; Eddarir S; Tokarski C; Rolando C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Oct; 879(27):2852-9. PubMed ID: 21908239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterned poly(N-isopropylacrylamide) brushes on silica surfaces by microcontact printing followed by surface-initiated polymerization.
    Tu H; Heitzman CE; Braun PV
    Langmuir; 2004 Sep; 20(19):8313-20. PubMed ID: 15350108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-nonsolvency effects for surface-initiated poly(2-(methacryloyloxy)ethyl phosphorylcholine) brushes in alcohol/water mixtures.
    Edmondson S; Nguyen NT; Lewis AL; Armes SP
    Langmuir; 2010 May; 26(10):7216-26. PubMed ID: 20380474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma.
    Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE
    Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct patterning of intrinsically electron beam sensitive polymer brushes.
    Rastogi A; Paik MY; Tanaka M; Ober CK
    ACS Nano; 2010 Feb; 4(2):771-80. PubMed ID: 20121228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of molecular brushes with polyelectrolyte backbones onto oppositely charged surfaces: a self-consistent field theory.
    Feuz L; Leermakers FA; Textor M; Borisov O
    Langmuir; 2008 Jul; 24(14):7232-44. PubMed ID: 18558731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-active and stimuli-responsive polymer--Si(100) hybrids from surface-initiated atom transfer radical polymerization for control of cell adhesion.
    Xu FJ; Zhong SP; Yung LY; Kang ET; Neoh KG
    Biomacromolecules; 2004; 5(6):2392-403. PubMed ID: 15530056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular transport and flow past hard and soft surfaces: computer simulation of model systems.
    Léonforte F; Servantie J; Pastorino C; Müller M
    J Phys Condens Matter; 2011 May; 23(18):184105. PubMed ID: 21508476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmentally responsive self-assembly of mixed poly(tert-butyl acrylate)-polystyrene brush-grafted silica nanoparticles in selective polymer matrices.
    Tang S; Fox TL; Lo TY; Horton JM; Ho RM; Zhao B; Stewart PL; Zhu L
    Soft Matter; 2015 Jul; 11(27):5501-12. PubMed ID: 26061172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Producing high-density high-molecular-weight polymer brushes by a "grafting to" method from a concentrated homopolymer solution.
    Taylor W; Jones RA
    Langmuir; 2010 Sep; 26(17):13954-8. PubMed ID: 20672847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructure of a poly(acrylic acid) brush and its transition in the amphiphilic diblock copolymer monolayer on the water surface.
    Matsuoka H; Suetomi Y; Kaewsaiha P; Matsumoto K
    Langmuir; 2009 Dec; 25(24):13752-62. PubMed ID: 19583229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.