These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 21851308)
1. Advanced preformulation investigations for the development of a lead intravaginal bioadhesive polymeric device. Ndesendo VM; Pillay V; Choonara YE; du Toit LC; Buchmann E; Kumar P; Khan RA; Meyer LC Drug Dev Ind Pharm; 2012 Mar; 38(3):271-93. PubMed ID: 21851308 [TBL] [Abstract][Full Text] [Related]
2. In vitro and ex vivo bioadhesivity analysis of polymeric intravaginal caplets using physicomechanics and computational structural modeling. Ndesendo VM; Pillay V; Choonara YE; Khan RA; Meyer L; Buchmann E; Rosin U Int J Pharm; 2009 Mar; 370(1-2):151-9. PubMed ID: 19114098 [TBL] [Abstract][Full Text] [Related]
3. Optimization of a polymer composite employing molecular mechanic simulations and artificial neural networks for a novel intravaginal bioadhesive drug delivery device. Ndesendo VM; Pillay V; Choonara YE; du Toit LC; Kumar P; Buchmann E; Meyer LC; Khan RA Pharm Dev Technol; 2012; 17(4):407-20. PubMed ID: 21231902 [TBL] [Abstract][Full Text] [Related]
4. In vivo evaluation of a mucoadhesive polymeric caplet for intravaginal anti-HIV-1 delivery and development of a molecular mechanistic model for thermochemical characterization. Ndesendo VM; Choonara YE; Meyer LC; Kumar P; Tomar LK; Tyagi C; du Toit LC; Pillay V Drug Dev Ind Pharm; 2015; 41(8):1274-87. PubMed ID: 25109400 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the physicochemical and physicomechanical properties of a novel intravaginal bioadhesive polymeric device in the pig model. Ndesendo VM; Pillay V; Choonara YE; du Toit LC; Buchmann E; Meyer LC; Khan RA; Rosin U AAPS PharmSciTech; 2010 Jun; 11(2):793-808. PubMed ID: 20446071 [TBL] [Abstract][Full Text] [Related]
6. In vivo evaluation of the release of zidovudine and polystyrene sulfonate from a dual intravaginal bioadhesive polymeric device in the pig model. Ndesendo VM; Pillay V; Choonara YE; Du Toit LC; Meyer LC; Buchmann E; Kumar P; Khan RA J Pharm Sci; 2011 Apr; 100(4):1416-35. PubMed ID: 20960571 [TBL] [Abstract][Full Text] [Related]
7. Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance. Grayson AC; Cima MJ; Langer R Biomaterials; 2005 May; 26(14):2137-45. PubMed ID: 15576189 [TBL] [Abstract][Full Text] [Related]
8. In silico mechanistic disposition and in vivo evaluation of zero-order drug release from a novel triple-layered tablet matrix. Moodley K; Choonara YE; Kumar P; du Toit LC; Pillay V Expert Opin Drug Deliv; 2015 May; 12(5):693-713. PubMed ID: 25534542 [TBL] [Abstract][Full Text] [Related]
9. Enhanced surface attachment of protein-type targeting ligands to poly(lactide-co-glycolide) nanoparticles using variable expression of polymeric acid functionality. McCarron PA; Marouf WM; Donnelly RF; Scott C J Biomed Mater Res A; 2008 Dec; 87(4):873-84. PubMed ID: 18228271 [TBL] [Abstract][Full Text] [Related]
10. Effect of PLGA hydrophilia on the drug release and the hypoglucemic activity of different insulin-loaded PLGA microspheres. Presmanes C; de Miguel L; Espada R; Alvarez C; Morales E; Torrado JJ J Microencapsul; 2011; 28(8):791-8. PubMed ID: 21967461 [TBL] [Abstract][Full Text] [Related]
11. Effect of drug type on the degradation rate of PLGA matrices. Siegel SJ; Kahn JB; Metzger K; Winey KI; Werner K; Dan N Eur J Pharm Biopharm; 2006 Nov; 64(3):287-93. PubMed ID: 16949804 [TBL] [Abstract][Full Text] [Related]
12. Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. Kohane DS; Tse JY; Yeo Y; Padera R; Shubina M; Langer R J Biomed Mater Res A; 2006 May; 77(2):351-61. PubMed ID: 16425240 [TBL] [Abstract][Full Text] [Related]
13. Optimization of a dual mechanism gastrofloatable and gastroadhesive delivery system for narrow absorption window drugs. Murphy C; Pillay V; Choonara YE; du Toit LC; Ndesendo VM; Chirwa N; Kumar P AAPS PharmSciTech; 2012 Mar; 13(1):1-15. PubMed ID: 22048877 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of multi-layered biodegradable drug delivery device based on micro-structuring of PLGA polymers. Ryu WH; Vyakarnam M; Greco RS; Prinz FB; Fasching RJ Biomed Microdevices; 2007 Dec; 9(6):845-53. PubMed ID: 17577671 [TBL] [Abstract][Full Text] [Related]
15. Development of biodegradable drug releasing polymeric cardiovascular stents and in vitro evaluation. Sarisözen C; Arica B; Hincal AA; Caliş S J Microencapsul; 2009 Sep; 26(6):501-12. PubMed ID: 18932059 [TBL] [Abstract][Full Text] [Related]
16. Evaluating the in vitro and in vivo efficacy of nano-structured polymers for bladder tissue replacement applications. Pattison M; Webster TJ; Leslie J; Kaefer M; Haberstroh KM Macromol Biosci; 2007 May; 7(5):690-700. PubMed ID: 17477448 [TBL] [Abstract][Full Text] [Related]
17. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. Mundargi RC; Babu VR; Rangaswamy V; Patel P; Aminabhavi TM J Control Release; 2008 Feb; 125(3):193-209. PubMed ID: 18083265 [TBL] [Abstract][Full Text] [Related]
18. Molecular release from a polymeric microreservoir device: Influence of chemistry, polymer swelling, and loading on device performance. Richards Grayson AC; Cima MJ; Langer R J Biomed Mater Res A; 2004 Jun; 69(3):502-12. PubMed ID: 15127397 [TBL] [Abstract][Full Text] [Related]
19. Controlled assembly of poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres under ultrasonic irradiation. Jevtić M; Radulović A; Ignjatović N; Mitrić M; Uskoković D Acta Biomater; 2009 Jan; 5(1):208-18. PubMed ID: 18753023 [TBL] [Abstract][Full Text] [Related]
20. Versatility of biodegradable poly(D,L-lactic-co-glycolic acid) microspheres for plasmid DNA delivery. Díez S; Tros de Ilarduya C Eur J Pharm Biopharm; 2006 Jun; 63(2):188-97. PubMed ID: 16697172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]