BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21851806)

  • 1. Transforming growth factor-β regulates the growth of valve interstitial cells in vitro.
    Li C; Gotlieb AI
    Am J Pathol; 2011 Oct; 179(4):1746-55. PubMed ID: 21851806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transforming growth factor-beta regulates in vitro heart valve repair by activated valve interstitial cells.
    Liu AC; Gotlieb AI
    Am J Pathol; 2008 Nov; 173(5):1275-85. PubMed ID: 18832581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming growth factor-β1 promotes fibrosis but attenuates calcification of valvular tissue applied as a three-dimensional calcific aortic valve disease model.
    Jenke A; Kistner J; Saradar S; Chekhoeva A; Yazdanyar M; Bergmann AK; Rötepohl MV; Lichtenberg A; Akhyari P
    Am J Physiol Heart Circ Physiol; 2020 Nov; 319(5):H1123-H1141. PubMed ID: 32986963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wnt3a/β-catenin increases proliferation in heart valve interstitial cells.
    Xu S; Gotlieb AI
    Cardiovasc Pathol; 2013; 22(2):156-66. PubMed ID: 22889676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fibroblast growth factor-2 promotes in vitro mitral valve interstitial cell repair through transforming growth factor-β/Smad signaling.
    Han L; Gotlieb AI
    Am J Pathol; 2011 Jan; 178(1):119-27. PubMed ID: 21224050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell density regulates in vitro activation of heart valve interstitial cells.
    Xu S; Liu AC; Kim H; Gotlieb AI
    Cardiovasc Pathol; 2012; 21(2):65-73. PubMed ID: 21397521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface chemistry regulates valvular interstitial cell differentiation in vitro.
    Rush MN; Coombs KE; Hedberg-Dirk EL
    Acta Biomater; 2015 Dec; 28():76-85. PubMed ID: 26428193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential activity of TGF-beta2 on the expression of p27Kip1 and Cdk4 in actively cycling and contact inhibited rabbit corneal endothelial cells.
    Kim TY; Kim WI; Smith RE; Kay EP
    Mol Vis; 2001 Nov; 7():261-70. PubMed ID: 11723444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transforming growth factor-beta antagonizes alveolar type II cell proliferation induced by keratinocyte growth factor.
    Zhang F; Nielsen LD; Lucas JJ; Mason RJ
    Am J Respir Cell Mol Biol; 2004 Dec; 31(6):679-86. PubMed ID: 15333329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of valvular interstitial cells is mediated by transforming growth factor-beta1 interactions with matrix molecules.
    Cushing MC; Liao JT; Anseth KS
    Matrix Biol; 2005 Sep; 24(6):428-37. PubMed ID: 16055320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On intrinsic stress fiber contractile forces in semilunar heart valve interstitial cells using a continuum mixture model.
    Sakamoto Y; Buchanan RM; Sacks MS
    J Mech Behav Biomed Mater; 2016 Feb; 54():244-58. PubMed ID: 26476967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between valvular interstitial cell morphology and phenotypes: A novel way to detect activation.
    Ali MS; Deb N; Wang X; Rahman M; Christopher GF; Lacerda CMR
    Tissue Cell; 2018 Oct; 54():38-46. PubMed ID: 30309508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Functional Role of Valve Interstitial Cell Stress Fibers: A Continuum Modeling Approach.
    Sakamoto Y; Buchanan RM; Sanchez-Adams J; Guilak F; Sacks MS
    J Biomech Eng; 2017 Feb; 139(2):0210071-02100713. PubMed ID: 28024085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2).
    Strutz F; Zeisberg M; Renziehausen A; Raschke B; Becker V; van Kooten C; Müller G
    Kidney Int; 2001 Feb; 59(2):579-92. PubMed ID: 11168939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of transforming growth factor on cell cycle regulatory molecules in human myeloid leukemia cells.
    Hu X; Zhang X; Zhong Q; Fisher AB; Bryington M; Zuckerman KS
    Oncogene; 2001 Oct; 20(47):6840-50. PubMed ID: 11687963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of cell motility in single heart valve interstitial cells in vitro.
    Liu AC; Gotlieb AI
    Histol Histopathol; 2007 Aug; 22(8):873-82. PubMed ID: 17503344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smad7 abrogates transforming growth factor-beta1-mediated growth inhibition in COLO-357 cells through functional inactivation of the retinoblastoma protein.
    Boyer Arnold N; Korc M
    J Biol Chem; 2005 Jun; 280(23):21858-66. PubMed ID: 15811853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ginsenoside Rh2 induces cell cycle arrest and differentiation in human leukemia cells by upregulating TGF-β expression.
    Chung KS; Cho SH; Shin JS; Kim DH; Choi JH; Choi SY; Rhee YK; Hong HD; Lee KT
    Carcinogenesis; 2013 Feb; 34(2):331-40. PubMed ID: 23125221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density-dependent shift of transforming growth factor-beta-1 from inhibition to stimulation of vascular smooth muscle cell growth is based on unconventional regulation of proliferation, apoptosis and contact inhibition.
    Hneino M; Bouazza L; Bricca G; Li JY; Langlois D
    J Vasc Res; 2009; 46(2):85-97. PubMed ID: 18596377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming growth factor-beta induces Cdk2 relocalization to the cytoplasm coincident with dephosphorylation of retinoblastoma tumor suppressor protein.
    Brown KA; Roberts RL; Arteaga CL; Law BK
    Breast Cancer Res; 2004; 6(2):R130-9. PubMed ID: 14979923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.