BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21852305)

  • 1. A deeper look into transcription regulatory code by preferred pair distance templates for transcription factor binding sites.
    Kulakovskiy IV; Belostotsky AA; Kasianov AS; Esipova NG; Medvedeva YA; Eliseeva IA; Makeev VJ
    Bioinformatics; 2011 Oct; 27(19):2621-4. PubMed ID: 21852305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Most of the tight positional conservation of transcription factor binding sites near the transcription start site reflects their co-localization within regulatory modules.
    Acevedo-Luna N; Mariño-Ramírez L; Halbert A; Hansen U; Landsman D; Spouge JL
    BMC Bioinformatics; 2016 Nov; 17(1):479. PubMed ID: 27871221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription factor-DNA binding: beyond binding site motifs.
    Inukai S; Kock KH; Bulyk ML
    Curr Opin Genet Dev; 2017 Apr; 43():110-119. PubMed ID: 28359978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distance preferences in the arrangement of binding motifs and hierarchical levels in organization of transcription regulatory information.
    Makeev VJ; Lifanov AP; Nazina AG; Papatsenko DA
    Nucleic Acids Res; 2003 Oct; 31(20):6016-26. PubMed ID: 14530449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The GCN4 bZIP can bind to noncognate gene regulatory sequences.
    Fedorova AV; Chan IS; Shin JA
    Biochim Biophys Acta; 2006 Jul; 1764(7):1252-9. PubMed ID: 16784907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Preferred distances between DNA binding sites for factors regulating transcription initiation].
    Kulakovskiĭ IV; Kas'ianov AS; Belostotskiĭ AA; Eliseeva IA; Makeev VIu
    Biofizika; 2011; 56(1):136-9. PubMed ID: 21442895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FootprintDB: Analysis of Plant Cis-Regulatory Elements, Transcription Factors, and Binding Interfaces.
    Contreras-Moreira B; Sebastian A
    Methods Mol Biol; 2016; 1482():259-77. PubMed ID: 27557773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-dependent formation of transcription factor pairs alters their binding specificity.
    Jolma A; Yin Y; Nitta KR; Dave K; Popov A; Taipale M; Enge M; Kivioja T; Morgunova E; Taipale J
    Nature; 2015 Nov; 527(7578):384-8. PubMed ID: 26550823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription.
    Rauen T; Frye BC; Wang J; Raffetseder U; Alidousty C; En-Nia A; Floege J; Mertens PR
    Biochem Biophys Res Commun; 2016 Sep; 478(2):982-7. PubMed ID: 27524241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survey of protein-DNA interactions in Aspergillus oryzae on a genomic scale.
    Wang C; Lv Y; Wang B; Yin C; Lin Y; Pan L
    Nucleic Acids Res; 2015 May; 43(9):4429-46. PubMed ID: 25883143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide mapping of Hif-1α binding sites in zebrafish.
    Greenald D; Jeyakani J; Pelster B; Sealy I; Mathavan S; van Eeden FJ
    BMC Genomics; 2015 Nov; 16():923. PubMed ID: 26559940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data.
    Zamanighomi M; Lin Z; Wang Y; Jiang R; Wong WH
    Nucleic Acids Res; 2017 Jun; 45(10):5666-5677. PubMed ID: 28472398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. footprintDB: a database of transcription factors with annotated cis elements and binding interfaces.
    Sebastian A; Contreras-Moreira B
    Bioinformatics; 2014 Jan; 30(2):258-65. PubMed ID: 24234003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the association between transcription factor binding site variants and distinct accompanying regulatory motifs in yeast.
    Chiang S; Swamy KB; Hsu TW; Tsai ZT; Lu HH; Wang D; Tsai HK
    Gene; 2012 Jan; 491(2):237-45. PubMed ID: 21963994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico analysis of the promoter region of olfactory receptors in cattle (
    Samuel B; Dinka H
    Nucleosides Nucleotides Nucleic Acids; 2020; 39(6):853-865. PubMed ID: 32028828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution.
    Denas O; Sandstrom R; Cheng Y; Beal K; Herrero J; Hardison RC; Taylor J
    BMC Genomics; 2015 Feb; 16(1):87. PubMed ID: 25765714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nsite, NsiteH and NsiteM computer tools for studying transcription regulatory elements.
    Shahmuradov IA; Solovyev VV
    Bioinformatics; 2015 Nov; 31(21):3544-5. PubMed ID: 26142184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RTFBSDB: an integrated framework for transcription factor binding site analysis.
    Wang Z; Martins AL; Danko CG
    Bioinformatics; 2016 Oct; 32(19):3024-6. PubMed ID: 27288497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.