These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 21852305)

  • 1. A deeper look into transcription regulatory code by preferred pair distance templates for transcription factor binding sites.
    Kulakovskiy IV; Belostotsky AA; Kasianov AS; Esipova NG; Medvedeva YA; Eliseeva IA; Makeev VJ
    Bioinformatics; 2011 Oct; 27(19):2621-4. PubMed ID: 21852305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Most of the tight positional conservation of transcription factor binding sites near the transcription start site reflects their co-localization within regulatory modules.
    Acevedo-Luna N; Mariño-Ramírez L; Halbert A; Hansen U; Landsman D; Spouge JL
    BMC Bioinformatics; 2016 Nov; 17(1):479. PubMed ID: 27871221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distance preferences in the arrangement of binding motifs and hierarchical levels in organization of transcription regulatory information.
    Makeev VJ; Lifanov AP; Nazina AG; Papatsenko DA
    Nucleic Acids Res; 2003 Oct; 31(20):6016-26. PubMed ID: 14530449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The GCN4 bZIP can bind to noncognate gene regulatory sequences.
    Fedorova AV; Chan IS; Shin JA
    Biochim Biophys Acta; 2006 Jul; 1764(7):1252-9. PubMed ID: 16784907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Preferred distances between DNA binding sites for factors regulating transcription initiation].
    Kulakovskiĭ IV; Kas'ianov AS; Belostotskiĭ AA; Eliseeva IA; Makeev VIu
    Biofizika; 2011; 56(1):136-9. PubMed ID: 21442895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FootprintDB: Analysis of Plant Cis-Regulatory Elements, Transcription Factors, and Binding Interfaces.
    Contreras-Moreira B; Sebastian A
    Methods Mol Biol; 2016; 1482():259-77. PubMed ID: 27557773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA-dependent formation of transcription factor pairs alters their binding specificity.
    Jolma A; Yin Y; Nitta KR; Dave K; Popov A; Taipale M; Enge M; Kivioja T; Morgunova E; Taipale J
    Nature; 2015 Nov; 527(7578):384-8. PubMed ID: 26550823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription factor-DNA binding: beyond binding site motifs.
    Inukai S; Kock KH; Bulyk ML
    Curr Opin Genet Dev; 2017 Apr; 43():110-119. PubMed ID: 28359978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription.
    Rauen T; Frye BC; Wang J; Raffetseder U; Alidousty C; En-Nia A; Floege J; Mertens PR
    Biochem Biophys Res Commun; 2016 Sep; 478(2):982-7. PubMed ID: 27524241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survey of protein-DNA interactions in Aspergillus oryzae on a genomic scale.
    Wang C; Lv Y; Wang B; Yin C; Lin Y; Pan L
    Nucleic Acids Res; 2015 May; 43(9):4429-46. PubMed ID: 25883143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide mapping of Hif-1α binding sites in zebrafish.
    Greenald D; Jeyakani J; Pelster B; Sealy I; Mathavan S; van Eeden FJ
    BMC Genomics; 2015 Nov; 16():923. PubMed ID: 26559940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data.
    Zamanighomi M; Lin Z; Wang Y; Jiang R; Wong WH
    Nucleic Acids Res; 2017 Jun; 45(10):5666-5677. PubMed ID: 28472398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. footprintDB: a database of transcription factors with annotated cis elements and binding interfaces.
    Sebastian A; Contreras-Moreira B
    Bioinformatics; 2014 Jan; 30(2):258-65. PubMed ID: 24234003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the association between transcription factor binding site variants and distinct accompanying regulatory motifs in yeast.
    Chiang S; Swamy KB; Hsu TW; Tsai ZT; Lu HH; Wang D; Tsai HK
    Gene; 2012 Jan; 491(2):237-45. PubMed ID: 21963994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico analysis of the promoter region of olfactory receptors in cattle (
    Samuel B; Dinka H
    Nucleosides Nucleotides Nucleic Acids; 2020; 39(6):853-865. PubMed ID: 32028828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution.
    Denas O; Sandstrom R; Cheng Y; Beal K; Herrero J; Hardison RC; Taylor J
    BMC Genomics; 2015 Feb; 16(1):87. PubMed ID: 25765714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Position-dependent function of human sequence-specific transcription factors.
    Duttke SH; Guzman C; Chang M; Delos Santos NP; McDonald BR; Xie J; Carlin AF; Heinz S; Benner C
    Nature; 2024 Jul; 631(8022):891-898. PubMed ID: 39020164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nsite, NsiteH and NsiteM computer tools for studying transcription regulatory elements.
    Shahmuradov IA; Solovyev VV
    Bioinformatics; 2015 Nov; 31(21):3544-5. PubMed ID: 26142184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.