These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 21852402)
1. Fez function is required to maintain the size of the animal plate in the sea urchin embryo. Yaguchi S; Yaguchi J; Wei Z; Jin Y; Angerer LM; Inaba K Development; 2011 Oct; 138(19):4233-43. PubMed ID: 21852402 [TBL] [Abstract][Full Text] [Related]
2. Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus. Tsironis I; Paganos P; Gouvi G; Tsimpos P; Stamopoulou A; Arnone MI; Flytzanis CN Dev Biol; 2021 Jul; 475():131-144. PubMed ID: 33484706 [TBL] [Abstract][Full Text] [Related]
3. Meis transcription factor maintains the neurogenic ectoderm and regulates the anterior-posterior patterning in embryos of a sea urchin, Hemicentrotus pulcherrimus. Yaguchi J; Yamazaki A; Yaguchi S Dev Biol; 2018 Dec; 444(1):1-8. PubMed ID: 30266259 [TBL] [Abstract][Full Text] [Related]
5. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Duboc V; Röttinger E; Besnardeau L; Lepage T Dev Cell; 2004 Mar; 6(3):397-410. PubMed ID: 15030762 [TBL] [Abstract][Full Text] [Related]
6. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans. Bergeron KF; Xu X; Brandhorst BP Mech Dev; 2011; 128(1-2):71-89. PubMed ID: 21056656 [TBL] [Abstract][Full Text] [Related]
7. Zinc finger homeobox is required for the differentiation of serotonergic neurons in the sea urchin embryo. Yaguchi J; Angerer LM; Inaba K; Yaguchi S Dev Biol; 2012 Mar; 363(1):74-83. PubMed ID: 22210002 [TBL] [Abstract][Full Text] [Related]
8. New regulatory circuit controlling spatial and temporal gene expression in the sea urchin embryo oral ectoderm GRN. Li E; Materna SC; Davidson EH Dev Biol; 2013 Oct; 382(1):268-79. PubMed ID: 23933172 [TBL] [Abstract][Full Text] [Related]
9. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. Lapraz F; Besnardeau L; Lepage T PLoS Biol; 2009 Nov; 7(11):e1000248. PubMed ID: 19956794 [TBL] [Abstract][Full Text] [Related]
10. Deciphering and modelling the TGF-β signalling interplays specifying the dorsal-ventral axis of the sea urchin embryo. Floc'hlay S; Molina MD; Hernandez C; Haillot E; Thomas-Chollier M; Lepage T; Thieffry D Development; 2021 Jan; 148(2):. PubMed ID: 33298464 [TBL] [Abstract][Full Text] [Related]
11. TGFβ signaling positions the ciliary band and patterns neurons in the sea urchin embryo. Yaguchi S; Yaguchi J; Angerer RC; Angerer LM; Burke RD Dev Biol; 2010 Nov; 347(1):71-81. PubMed ID: 20709054 [TBL] [Abstract][Full Text] [Related]
12. A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos. Yaguchi S; Yaguchi J; Angerer RC; Angerer LM Dev Cell; 2008 Jan; 14(1):97-107. PubMed ID: 18194656 [TBL] [Abstract][Full Text] [Related]
13. Signaling by bone morphogenetic proteins directs formation of an ectodermal signaling center that regulates craniofacial development. Foppiano S; Hu D; Marcucio RS Dev Biol; 2007 Dec; 312(1):103-14. PubMed ID: 18028903 [TBL] [Abstract][Full Text] [Related]
14. Identification of early requirements for preplacodal ectoderm and sensory organ development. Kwon HJ; Bhat N; Sweet EM; Cornell RA; Riley BB PLoS Genet; 2010 Sep; 6(9):e1001133. PubMed ID: 20885782 [TBL] [Abstract][Full Text] [Related]
15. Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos. Yaguchi S; Yaguchi J; Burke RD Development; 2006 Jun; 133(12):2337-46. PubMed ID: 16687447 [TBL] [Abstract][Full Text] [Related]
16. Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. Nordin K; LaBonne C Dev Cell; 2014 Nov; 31(3):374-382. PubMed ID: 25453832 [TBL] [Abstract][Full Text] [Related]
17. Sp-Smad2/3 mediates patterning of neurogenic ectoderm by nodal in the sea urchin embryo. Yaguchi S; Yaguchi J; Burke RD Dev Biol; 2007 Feb; 302(2):494-503. PubMed ID: 17101124 [TBL] [Abstract][Full Text] [Related]
18. SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. Wu MY; Ramel MC; Howell M; Hill CS PLoS Biol; 2011 Feb; 9(2):e1000593. PubMed ID: 21358802 [TBL] [Abstract][Full Text] [Related]
19. Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown. Ben-Tabou de-Leon S; Su YH; Lin KT; Li E; Davidson EH Dev Biol; 2013 Feb; 374(1):245-54. PubMed ID: 23211652 [TBL] [Abstract][Full Text] [Related]
20. Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation. Duboc V; Lapraz F; Besnardeau L; Lepage T Dev Biol; 2008 Aug; 320(1):49-59. PubMed ID: 18582858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]