These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21852754)

  • 1. Tissue-specific organelle DNA degradation mediated by DPD1 exonuclease.
    Tang LY; Sakamoto W
    Plant Signal Behav; 2011 Sep; 6(9):1391-3. PubMed ID: 21852754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A conserved, Mg²+-dependent exonuclease degrades organelle DNA during Arabidopsis pollen development.
    Matsushima R; Tang LY; Zhang L; Yamada H; Twell D; Sakamoto W
    Plant Cell; 2011 Apr; 23(4):1608-24. PubMed ID: 21521697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations defective in ribonucleotide reductase activity interfere with pollen plastid DNA degradation mediated by DPD1 exonuclease.
    Tang LY; Matsushima R; Sakamoto W
    Plant J; 2012 May; 70(4):637-49. PubMed ID: 22239102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plastid Inheritance Revisited: Emerging Role of Organelle DNA Degradation in Angiosperms.
    Sakamoto W; Takami T
    Plant Cell Physiol; 2024 May; 65(4):484-492. PubMed ID: 37702423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of organelle DNA degradation mediated by DPD1 exonuclease in the rice genome-edited line.
    Islam MF; Yamatani H; Takami T; Kusaba M; Sakamoto W
    Plant Mol Biol; 2024 Jun; 114(3):71. PubMed ID: 38856917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleases in higher plants and their possible involvement in DNA degradation during leaf senescence.
    Sakamoto W; Takami T
    J Exp Bot; 2014 Jul; 65(14):3835-43. PubMed ID: 24634485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring by epifluorescence microscopy of organelle DNA fate during pollen development in five angiosperm species.
    Corriveau JL; Coleman AW
    Dev Biol; 1991 Sep; 147(1):271-80. PubMed ID: 1879613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organelle DNA degradation contributes to the efficient use of phosphate in seed plants.
    Takami T; Ohnishi N; Kurita Y; Iwamura S; Ohnishi M; Kusaba M; Mimura T; Sakamoto W
    Nat Plants; 2018 Dec; 4(12):1044-1055. PubMed ID: 30420711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms for independent cytoplasmic inheritance of mitochondria and plastids in angiosperms.
    Nagata N
    J Plant Res; 2010 Mar; 123(2):193-9. PubMed ID: 20196234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis.
    Ramachandran V; Chen X
    Science; 2008 Sep; 321(5895):1490-2. PubMed ID: 18787168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloroplast DNA Dynamics: Copy Number, Quality Control and Degradation.
    Sakamoto W; Takami T
    Plant Cell Physiol; 2018 Jun; 59(6):1120-1127. PubMed ID: 29860378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maternal inheritance of plastids and mitochondria in Cycas L. (Cycadaceae).
    Zhong ZR; Li N; Qian D; Jin JH; Chen T
    Mol Genet Genomics; 2011 Dec; 286(5-6):411-6. PubMed ID: 22071672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergent potentials for cytoplasmic inheritance within the genus Syringa. A new trait associated with speciogenesis.
    Liu Y; Cui H; Zhang Q; Sodmergen
    Plant Physiol; 2004 Sep; 136(1):2762-70. PubMed ID: 15361583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of plastids in pollen grains: involvement of FtsZ1 in pollen plastid division.
    Tang LY; Nagata N; Matsushima R; Chen Y; Yoshioka Y; Sakamoto W
    Plant Cell Physiol; 2009 Apr; 50(4):904-8. PubMed ID: 19282372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of pollen lipid body biogenesis by MAP kinases and downstream WRKY transcription factors in Arabidopsis.
    Zheng Y; Deng X; Qu A; Zhang M; Tao Y; Yang L; Liu Y; Xu J; Zhang S
    PLoS Genet; 2018 Dec; 14(12):e1007880. PubMed ID: 30586356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of sticky generative cell mutants reveals that suppression of callose deposition in the generative cell is necessary for generative cell internalization and differentiation in Arabidopsis.
    Oh SA; Park HJ; Kim MH; Park SK
    Plant J; 2021 Apr; 106(1):228-244. PubMed ID: 33458909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic morphologies of pollen plastids visualised by vegetative-specific FtsZ1-GFP in Arabidopsis thaliana.
    Fujiwara MT; Hashimoto H; Kazama Y; Hirano T; Yoshioka Y; Aoki S; Sato N; Itoh RD; Abe T
    Protoplasma; 2010 Jun; 242(1-4):19-33. PubMed ID: 20195657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organelle movement and apical accumulation of secretory vesicles in pollen tubes of Arabidopsis thaliana depend on class XI myosins.
    Wang X; Sheng X; Tian X; Zhang Y; Li Y
    Plant J; 2020 Dec; 104(6):1685-1697. PubMed ID: 33067901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis DXO1 possesses deNADding and exonuclease activities and its mutation affects defense-related and photosynthetic gene expression.
    Pan S; Li KE; Huang W; Zhong H; Wu H; Wang Y; Zhang H; Cai Z; Guo H; Chen X; Xia Y
    J Integr Plant Biol; 2020 Jul; 62(7):967-983. PubMed ID: 31449356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AtNOT1 Is a Novel Regulator of Gene Expression during Pollen Development.
    Motomura K; Arae T; Araki-Uramoto H; Suzuki Y; Takeuchi H; Suzuki T; Ichihashi Y; Shibata A; Shirasu K; Takeda A; Higashiyama T; Chiba Y
    Plant Cell Physiol; 2020 Apr; 61(4):712-721. PubMed ID: 31879778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.