These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 21852971)

  • 1. Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations.
    Wang SJ; Hilgetag CC; Zhou C
    Front Comput Neurosci; 2011; 5():30. PubMed ID: 21852971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types.
    Tomov P; Pena RF; Zaks MA; Roque AC
    Front Comput Neurosci; 2014; 8():103. PubMed ID: 25228879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Modularity Tunes Mesoscale Criticality in Biological Neuronal Networks.
    Okujeni S; Egert U
    J Neurosci; 2023 Apr; 43(14):2515-2526. PubMed ID: 36868860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal hierarchical modular topologies for producing limited sustained activation of neural networks.
    Kaiser M; Hilgetag CC
    Front Neuroinform; 2010; 4():8. PubMed ID: 20514144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of neural population activity toward self-organized criticality.
    Yada Y; Mita T; Sanada A; Yano R; Kanzaki R; Bakkum DJ; Hierlemann A; Takahashi H
    Neuroscience; 2017 Feb; 343():55-65. PubMed ID: 27915209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Less is more: wiring-economical modular networks support self-sustained firing-economical neural avalanches for efficient processing.
    Liang J; Wang SJ; Zhou C
    Natl Sci Rev; 2022 Mar; 9(3):nwab102. PubMed ID: 35355506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hopf Bifurcation in Mean Field Explains Critical Avalanches in Excitation-Inhibition Balanced Neuronal Networks: A Mechanism for Multiscale Variability.
    Liang J; Zhou T; Zhou C
    Front Syst Neurosci; 2020; 14():580011. PubMed ID: 33324179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons.
    Rubinov M; Sporns O; Thivierge JP; Breakspear M
    PLoS Comput Biol; 2011 Jun; 7(6):e1002038. PubMed ID: 21673863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of Self-Sustained Oscillatory States in Hierarchical Modular Networks with Mixtures of Electrophysiological Cell Types.
    Tomov P; Pena RF; Roque AC; Zaks MA
    Front Comput Neurosci; 2016; 10():23. PubMed ID: 27047367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avalanches in self-organized critical neural networks: a minimal model for the neural SOC universality class.
    Rybarsch M; Bornholdt S
    PLoS One; 2014; 9(4):e93090. PubMed ID: 24743324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
    Pasquale V; Massobrio P; Bologna LL; Chiappalone M; Martinoia S
    Neuroscience; 2008 Jun; 153(4):1354-69. PubMed ID: 18448256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Griffiths phases in infinite-dimensional, non-hierarchical modular networks.
    Cota W; Ă“dor G; Ferreira SC
    Sci Rep; 2018 Jun; 8(1):9144. PubMed ID: 29904065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems.
    Wang SJ; Ouyang G; Guang J; Zhang M; Wong KY; Zhou C
    Phys Rev Lett; 2016 Jan; 116(1):018101. PubMed ID: 26799044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-Range Amplitude Coupling Is Optimized for Brain Networks That Function at Criticality.
    Avramiea AE; Masood A; Mansvelder HD; Linkenkaer-Hansen K
    J Neurosci; 2022 Mar; 42(11):2221-2233. PubMed ID: 35082120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneity of synaptic input connectivity regulates spike-based neuronal avalanches.
    Wu S; Zhang Y; Cui Y; Li H; Wang J; Guo L; Xia Y; Yao D; Xu P; Guo D
    Neural Netw; 2019 Feb; 110():91-103. PubMed ID: 30508808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural determinants of criticality in biological networks.
    Valverde S; Ohse S; Turalska M; West BJ; Garcia-Ojalvo J
    Front Physiol; 2015; 6():127. PubMed ID: 26005422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avalanche criticality in individuals, fluid intelligence, and working memory.
    Xu L; Feng J; Yu L
    Hum Brain Mapp; 2022 Jun; 43(8):2534-2553. PubMed ID: 35146831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal avalanches imply maximum dynamic range in cortical networks at criticality.
    Shew WL; Yang H; Petermann T; Roy R; Plenz D
    J Neurosci; 2009 Dec; 29(49):15595-600. PubMed ID: 20007483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-organized criticality in cortical assemblies occurs in concurrent scale-free and small-world networks.
    Massobrio P; Pasquale V; Martinoia S
    Sci Rep; 2015 Jun; 5():10578. PubMed ID: 26030608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coexistence of scale-invariant and rhythmic behavior in self-organized criticality.
    Moosavi SA; Montakhab A; Valizadeh A
    Phys Rev E; 2018 Aug; 98(2-1):022304. PubMed ID: 30253485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.