These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 2185310)

  • 1. Immunoelectron microscopy of tissues processed by rapid freezing and freeze-substitution fixation without chemical fixatives: application to catalase in rat liver hepatocytes.
    Usuda N; Ma HJ; Hanai T; Yokota S; Hashimoto T; Nagata T
    J Histochem Cytochem; 1990 May; 38(5):617-23. PubMed ID: 2185310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunoelectron microscopic localization of sarcoplasmic reticulum proteins in cryofixed, freeze-dried, and low temperature-embedded tissue.
    Jorgensen AO; McGuffee LJ
    J Histochem Cytochem; 1987 Jul; 35(7):723-32. PubMed ID: 2953782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reappraisal of potassium permanganate oxidation applied to Lowicryl K4M embedded tissues processed by high pressure freezing/freeze substitution, with special reference to differential staining of the zymogen granules of rat gastric chief cells.
    Sawaguchi A; Ide S; Kawano J; Nagaike R; Oinuma T; Tojo H; Okamoto M; Suganuma T
    Arch Histol Cytol; 1999 Dec; 62(5):447-58. PubMed ID: 10678574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative fine structure study of rat cerebral cortex following ultra-rapid freezing and conventional chemical fixation procedures.
    Reger JF; Escaig F
    J Submicrosc Cytol Pathol; 1988 Oct; 20(4):691-700. PubMed ID: 3147130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunocytochemical localization of amylase in gerbil salivary gland acinar cells processed by rapid freezing and freeze-substitution fixation.
    Ichikawa M; Sasaki K; Ichikawa A
    J Histochem Cytochem; 1989 Feb; 37(2):185-94. PubMed ID: 2463301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of particle size on labeling density for catalase in protein A-gold immunocytochemistry.
    Yokota S
    J Histochem Cytochem; 1988 Jan; 36(1):107-9. PubMed ID: 3335766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunoelectron microscopic study of a new D-amino acid oxidase-immunoreactive subcompartment in rat liver peroxisomes.
    Usuda N; Yokota S; Ichikawa R; Hashimoto T; Nagata T
    J Histochem Cytochem; 1991 Jan; 39(1):95-102. PubMed ID: 1670581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal preparatory procedures of cryofixation for immunocytochemistry.
    Ichikawa M; Sasaki K; Ichikawa A
    J Electron Microsc Tech; 1989 Jun; 12(2):88-94. PubMed ID: 2474639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ localization of cartilage extracellular matrix components by immunoelectron microscopy after cryotechnical tissue processing.
    Hunziker EB; Herrmann W
    J Histochem Cytochem; 1987 Jun; 35(6):647-55. PubMed ID: 3553318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of urate oxidase in the crystalline cores of rat liver peroxisomes by immunocytochemistry and immunoblotting.
    Völkl A; Baumgart E; Fahimi HD
    J Histochem Cytochem; 1988 Apr; 36(4):329-36. PubMed ID: 3346536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of protein A-gold staining for peroxisomal enzymes by confocal laser scanning microscopy.
    Ogiwara N; Usuda N; Yamada M; Johkura K; Kametani K; Nakazawa A
    J Histochem Cytochem; 1999 Oct; 47(10):1343-9. PubMed ID: 10490463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of fixatives and embedding media on immunolabelling of freeze-substituted cells.
    Schwarz H; Humbel BM
    Scanning Microsc Suppl; 1989; 3():57-63; discussion 63-4. PubMed ID: 2694274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-substitution without aldehyde or osmium fixatives: ultrastructure and implications for immunocytochemistry.
    Monaghan P; Robertson D
    J Microsc; 1990 Jun; 158(Pt 3):355-63. PubMed ID: 1697624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of osmicated tissues for Lowicryl K4M embedding.
    Nanci A; Mazariegos M; Fortin M
    J Histochem Cytochem; 1992 Jun; 40(6):869-74. PubMed ID: 1588031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contracting muscle: a challenge for freeze-substitution and low temperature embedding.
    Edelmann L
    Scanning Microsc Suppl; 1989; 3():241-51; discussion 251-2. PubMed ID: 2616954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of high pressure freezing with freeze substitution after long-term storage in chemical fixatives.
    Venter C; Van Der Merwe CF; Oberholzer HM; Bester MJ; Taute H
    Microsc Res Tech; 2013 Sep; 76(9):942-6. PubMed ID: 23818457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-pressure freezing for immunocytochemistry.
    Monaghan P; Perusinghe N; Müller M
    J Microsc; 1998 Dec; 192(Pt 3):248-58. PubMed ID: 9923417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeze drying and freeze substitution combined with low temperature-embedding. Preparation techniques for microprobe analysis of biological soft tissues.
    Wróblewski R; Wróblewski J
    Histochemistry; 1984; 81(5):469-75. PubMed ID: 6394557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunoelectron Microscopy of Cryofixed and Freeze-Substituted Plant Tissues.
    Takeuchi M; Takabe K; Mineyuki Y
    Methods Mol Biol; 2016; 1474():233-42. PubMed ID: 27515084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochemical investigation of gastric gland component cells with high-pressure freezing followed by freeze-substitution and hydrophilic resin embedding.
    Tsuyama S; Matsushita S; Takatsuka T; Nonaka S; Hasui K; Murata F
    Anat Sci Int; 2002 Mar; 77(1):74-83. PubMed ID: 12418087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.