These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 21853193)
1. Integrated sieving microstructures on microchannels for biological cell trapping and droplet formation. Yue W; Li CW; Xu T; Yang M Lab Chip; 2011 Oct; 11(19):3352-5. PubMed ID: 21853193 [TBL] [Abstract][Full Text] [Related]
2. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase. Chae SK; Lee CH; Lee SH; Kim TS; Kang JY Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972 [TBL] [Abstract][Full Text] [Related]
3. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices. Hung LH; Lin R; Lee AP Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921 [TBL] [Abstract][Full Text] [Related]
4. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS). Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874 [TBL] [Abstract][Full Text] [Related]
5. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Lewpiriyawong N; Yang C; Lam YC Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920 [TBL] [Abstract][Full Text] [Related]
6. A microdroplet-based shift register. Zagnoni M; Cooper JM Lab Chip; 2010 Nov; 10(22):3069-73. PubMed ID: 20856984 [TBL] [Abstract][Full Text] [Related]
7. Coalescence-assisted generation of single nanoliter droplets with predefined composition. Shemesh J; Nir A; Bransky A; Levenberg S Lab Chip; 2011 Oct; 11(19):3225-30. PubMed ID: 21826345 [TBL] [Abstract][Full Text] [Related]
8. A facile "liquid-molding" method to fabricate PDMS microdevices with 3-dimensional channel topography. Liu X; Wang Q; Qin J; Lin B Lab Chip; 2009 May; 9(9):1200-5. PubMed ID: 19370237 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic acoustophoretic force based low-concentration oil separation and detection from the environment. Wang H; Liu Z; Kim S; Koo C; Cho Y; Jang DY; Kim YJ; Han A Lab Chip; 2014 Mar; 14(5):947-56. PubMed ID: 24402640 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic droplet trapping array as nanoliter reactors for gas-liquid chemical reaction. Zhang Q; Zeng S; Qin J; Lin B Electrophoresis; 2009 Sep; 30(18):3181-8. PubMed ID: 19705356 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive two-dimensional manipulations of picoliter microfluidic droplets sampled from nanoliter samples. Zhang K; Liang Q; Ai X; Hu P; Wang Y; Luo G Anal Chem; 2011 Oct; 83(20):8029-34. PubMed ID: 21853976 [TBL] [Abstract][Full Text] [Related]
12. Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications. Yue W; Li CW; Xu T; Yang M Biosens Bioelectron; 2013 Mar; 41():675-83. PubMed ID: 23122749 [TBL] [Abstract][Full Text] [Related]
13. Rapid automatic creation of monodisperse emulsion droplets by microfluidic device with degassed PDMS slab as a detachable suction actuator. Murata Y; Nakashoji Y; Kondo M; Tanaka Y; Hashimoto M Electrophoresis; 2018 Feb; 39(3):504-511. PubMed ID: 28815723 [TBL] [Abstract][Full Text] [Related]
14. Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels. Maenaka H; Yamada M; Yasuda M; Seki M Langmuir; 2008 Apr; 24(8):4405-10. PubMed ID: 18327961 [TBL] [Abstract][Full Text] [Related]
15. Fluoropolymer surface coatings to control droplets in microfluidic devices. Riche CT; Zhang C; Gupta M; Malmstadt N Lab Chip; 2014 Jun; 14(11):1834-41. PubMed ID: 24722827 [TBL] [Abstract][Full Text] [Related]
16. Insulator-based dielectrophoretic single particle and single cancer cell trapping. Bhattacharya S; Chao TC; Ros A Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497 [TBL] [Abstract][Full Text] [Related]
17. Electrostatic charging and control of droplets in microfluidic devices. Zhou H; Yao S Lab Chip; 2013 Mar; 13(5):962-9. PubMed ID: 23338121 [TBL] [Abstract][Full Text] [Related]
18. Tuneable hydrophoretic separation using elastic deformation of poly(dimethylsiloxane). Choi S; Park JK Lab Chip; 2009 Jul; 9(13):1962-5. PubMed ID: 19532973 [TBL] [Abstract][Full Text] [Related]
19. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. VanDelinder V; Groisman A Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639 [TBL] [Abstract][Full Text] [Related]