These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 21853254)

  • 61. Differentiation of conductive cells: a matter of life and death.
    Heo JO; Blob B; Helariutta Y
    Curr Opin Plant Biol; 2017 Feb; 35():23-29. PubMed ID: 27794261
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Stem development through vascular tissues: EPFL-ERECTA family signaling that bounces in and out of phloem.
    Tameshige T; Ikematsu S; Torii KU; Uchida N
    J Exp Bot; 2017 Jan; 68(1):45-53. PubMed ID: 27965367
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Exogenously applied 24-epi brassinolide reduces lignification and alters cell wall carbohydrate biosynthesis in the secondary xylem of Liriodendron tulipifera.
    Jin H; Do J; Shin SJ; Choi JW; Choi YI; Kim W; Kwon M
    Phytochemistry; 2014 May; 101():40-51. PubMed ID: 24582278
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root.
    Sibout R; Plantegenet S; Hardtke CS
    Curr Biol; 2008 Mar; 18(6):458-63. PubMed ID: 18356049
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Means to Quantify Vascular Cell File Numbers in Different Tissues.
    Arents HE; Eswaran G; Glanc M; Mähönen AP; De Rybel B
    Methods Mol Biol; 2022; 2382():155-179. PubMed ID: 34705239
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Monitoring Vascular Regeneration and Xylem Connectivity in Arabidopsis thaliana.
    Melnyk CW
    Methods Mol Biol; 2017; 1544():91-102. PubMed ID: 28050832
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Phloem and xylem specification: pieces of the puzzle emerge.
    Carlsbecker A; Helariutta Y
    Curr Opin Plant Biol; 2005 Oct; 8(5):512-7. PubMed ID: 16039153
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Reconstitutive approach for investigating plant vascular development.
    Kondo Y
    J Plant Res; 2018 Jan; 131(1):23-29. PubMed ID: 29181650
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Protophloem differentiation in early Arabidopsis thaliana development.
    Bauby H; Divol F; Truernit E; Grandjean O; Palauqui JC
    Plant Cell Physiol; 2007 Jan; 48(1):97-109. PubMed ID: 17135286
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root.
    Mähönen AP; Bonke M; Kauppinen L; Riikonen M; Benfey PN; Helariutta Y
    Genes Dev; 2000 Dec; 14(23):2938-43. PubMed ID: 11114883
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Characterization of the plasma membrane proteins and receptor-like kinases associated with secondary vascular differentiation in poplar.
    Song D; Xi W; Shen J; Bi T; Li L
    Plant Mol Biol; 2011 May; 76(1-2):97-115. PubMed ID: 21431780
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation.
    Du Q; Wang H
    Plant Signal Behav; 2015; 10(10):e1078955. PubMed ID: 26340415
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The poplar basic helix-loop-helix transcription factor BEE3 - Like gene affects biomass production by enhancing proliferation of xylem cells in poplar.
    Noh SA; Choi YI; Cho JS; Lee H
    Biochem Biophys Res Commun; 2015 Jun; 462(1):64-70. PubMed ID: 25935487
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation.
    Ohtani M; Akiyoshi N; Takenaka Y; Sano R; Demura T
    J Exp Bot; 2017 Jan; 68(1):17-26. PubMed ID: 28013230
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Global comparative transcriptome analysis identifies gene network regulating secondary xylem development in Arabidopsis thaliana.
    Ko JH; Beers EP; Han KH
    Mol Genet Genomics; 2006 Dec; 276(6):517-31. PubMed ID: 16969662
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Evolution of vascular plants through redeployment of ancient developmental regulators.
    Lu KJ; van 't Wout Hofland N; Mor E; Mutte S; Abrahams P; Kato H; Vandepoele K; Weijers D; De Rybel B
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):733-740. PubMed ID: 31874927
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The formation of wood and its control.
    Zhang J; Nieminen K; Serra JA; Helariutta Y
    Curr Opin Plant Biol; 2014 Feb; 17():56-63. PubMed ID: 24507495
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Eucalyptus gunnii CCR and CAD2 promoters are active in lignifying cells during primary and secondary xylem formation in Arabidopsis thaliana.
    Baghdady A; Blervacq AS; Jouanin L; Grima-Pettenati J; Sivadon P; Hawkins S
    Plant Physiol Biochem; 2006; 44(11-12):674-83. PubMed ID: 17107813
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Molecular Mechanisms Underlying the Establishment and Maintenance of Vascular Stem Cells in Arabidopsis thaliana.
    Shimadzu S; Furuya T; Kondo Y
    Plant Cell Physiol; 2023 Mar; 64(3):274-283. PubMed ID: 36398989
    [TBL] [Abstract][Full Text] [Related]  

  • 80. ABCG9, ABCG11 and ABCG14 ABC transporters are required for vascular development in Arabidopsis.
    Le Hir R; Sorin C; Chakraborti D; Moritz T; Schaller H; Tellier F; Robert S; Morin H; Bako L; Bellini C
    Plant J; 2013 Dec; 76(5):811-24. PubMed ID: 24112720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.