These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21853307)

  • 1. Sprinter's motor signature does not change with fatigue.
    Choukou MA; Laffaye G; Heugas-De Panafieu AM
    Eur J Appl Physiol; 2012 Apr; 112(4):1557-68. PubMed ID: 21853307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in spring-mass model characteristics during repeated running sprints.
    Girard O; Micallef JP; Millet GP
    Eur J Appl Physiol; 2011 Jan; 111(1):125-34. PubMed ID: 20824280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuro-mechanical and metabolic adjustments to the repeated anaerobic sprint test in professional football players.
    Brocherie F; Millet GP; Girard O
    Eur J Appl Physiol; 2015 May; 115(5):891-903. PubMed ID: 25481506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spring-mass model characteristics during sprint running: correlation with performance and fatigue-induced changes.
    Morin JB; Jeannin T; Chevallier B; Belli A
    Int J Sports Med; 2006 Feb; 27(2):158-65. PubMed ID: 16475063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concurrent fatigue and potentiation in endurance athletes.
    Boullosa DA; Tuimil JL; Alegre LM; Iglesias E; Lusquiños F
    Int J Sports Physiol Perform; 2011 Mar; 6(1):82-93. PubMed ID: 21487152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated sprinting on natural grass impairs vertical stiffness but does not alter plantar loading in soccer players.
    Girard O; Racinais S; Kelly L; Millet GP; Brocherie F
    Eur J Appl Physiol; 2011 Oct; 111(10):2547-55. PubMed ID: 21369733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous change in spring-mass characteristics during a 400 m sprint.
    Hobara H; Inoue K; Gomi K; Sakamoto M; Muraoka T; Iso S; Kanosue K
    J Sci Med Sport; 2010 Mar; 13(2):256-61. PubMed ID: 19342299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fatigue effect of a simulated futsal match protocol on sprint performance and kinematics of the lower limbs.
    Dal Pupo J; Detanico D; Ache-Dias J; Santos SG
    J Sports Sci; 2017 Jan; 35(1):81-88. PubMed ID: 26949984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-intensity sprint fatigue does not alter constant-submaximal velocity running mechanics and spring-mass behavior.
    Morin JB; Tomazin K; Samozino P; Edouard P; Millet GY
    Eur J Appl Physiol; 2012 Apr; 112(4):1419-28. PubMed ID: 21826454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of resisted sled-pulling sprint training on acceleration and maximum speed performance.
    Zafeiridis A; Saraslanidis P; Manou V; Ioakimidis P; Dipla K; Kellis S
    J Sports Med Phys Fitness; 2005 Sep; 45(3):284-90. PubMed ID: 16230978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromuscular fatigability during repeated-sprint exercise in male athletes.
    Goodall S; Charlton K; Howatson G; Thomas K
    Med Sci Sports Exerc; 2015 Mar; 47(3):528-36. PubMed ID: 25010404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in running mechanics and spring-mass behaviour during a 5-km time trial.
    Girard O; Millet GP; Slawinski J; Racinais S; Micallef JP
    Int J Sports Med; 2013 Sep; 34(9):832-40. PubMed ID: 23549688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leg power and hopping stiffness: relationship with sprint running performance.
    Chelly SM; Denis C
    Med Sci Sports Exerc; 2001 Feb; 33(2):326-33. PubMed ID: 11224825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive and eccentric strength contribute to stiffness regulation during maximum velocity sprinting in team sport athletes and highly trained sprinters.
    Douglas J; Pearson S; Ross A; McGuigan M
    J Sports Sci; 2020 Jan; 38(1):29-37. PubMed ID: 31631783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower limb mechanical asymmetry during repeated treadmill sprints.
    Girard O; Brocherie F; Morin JB; Millet GP
    Hum Mov Sci; 2017 Apr; 52():203-214. PubMed ID: 28254534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical and Metabolic Responses during High-intensity Training in Elite 800-m Runners.
    Bachero-Mena B; González-Badillo JJ
    Int J Sports Med; 2021 Apr; 42(4):350-356. PubMed ID: 33075833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in force production, blood lactate and EMG activity in the 400-m sprint.
    Nummela A; Vuorimaa T; Rusko H
    J Sports Sci; 1992 Jun; 10(3):217-28. PubMed ID: 1602525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Running mechanics and leg muscle activity patterns during early and late acceleration phases of repeated treadmill sprints in male recreational athletes.
    Girard O; Brocherie F; Morin JB; Millet GP; Hansen C
    Eur J Appl Physiol; 2020 Dec; 120(12):2785-2796. PubMed ID: 32980967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run.
    Hunter I; Smith GA
    Eur J Appl Physiol; 2007 Aug; 100(6):653-61. PubMed ID: 17602239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute Kinematic and Kinetic Adaptations to Wearable Resistance During Sprint Acceleration.
    Macadam P; Simperingham KD; Cronin JB
    J Strength Cond Res; 2017 May; 31(5):1297-1304. PubMed ID: 27548784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.