These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Synthesis and biological evaluation of new epalrestat analogues as aldose reductase inhibitors (ARIs). Reddy TN; Ravinder M; Bagul P; Ravikanti K; Bagul C; Nanubolu JB; Srinivas K; Banerjee SK; Rao VJ Eur J Med Chem; 2014 Jan; 71():53-66. PubMed ID: 24275248 [TBL] [Abstract][Full Text] [Related]
3. (4-Oxo-2-thioxothiazolidin-3-yl)acetic acids as potent and selective aldose reductase inhibitors. Kucerova-Chlupacova M; Halakova D; Majekova M; Treml J; Stefek M; Soltesova Prnova M Chem Biol Interact; 2020 Dec; 332():109286. PubMed ID: 33038328 [TBL] [Abstract][Full Text] [Related]
4. Quinazolinone-based rhodanine-3-acetic acids as potent aldose reductase inhibitors: Synthesis, functional evaluation and molecular modeling study. El-Sayed S; Metwally K; El-Shanawani AA; Abdel-Aziz LM; El-Rashedy AA; Soliman MES; Quattrini L; Coviello V; la Motta C Bioorg Med Chem Lett; 2017 Oct; 27(20):4760-4764. PubMed ID: 28935265 [TBL] [Abstract][Full Text] [Related]
5. [Improved method of epalrestat synthesis]. Sheng R; Liu T; Hu YZ Zhejiang Da Xue Xue Bao Yi Xue Ban; 2003 Aug; 32(4):356-8. PubMed ID: 12970944 [TBL] [Abstract][Full Text] [Related]
6. In vitro evaluation of 5-arylidene-2-thioxo-4-thiazolidinones active as aldose reductase inhibitors. Maccari R; Del Corso A; Giglio M; Moschini R; Mura U; Ottanà R Bioorg Med Chem Lett; 2011 Jan; 21(1):200-3. PubMed ID: 21129963 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of Novel Fluorine Compounds Substituted-4-thiazolidinones Derived from Rhodanine Drug as Highly Bioactive Probes. Makki MST; Abdel-Rahman RM; Alshammari NAH Curr Org Synth; 2019; 16(3):413-422. PubMed ID: 31984903 [TBL] [Abstract][Full Text] [Related]
8. Privileged scaffolds or promiscuous binders: a comparative study on rhodanines and related heterocycles in medicinal chemistry. Mendgen T; Steuer C; Klein CD J Med Chem; 2012 Jan; 55(2):743-53. PubMed ID: 22077389 [TBL] [Abstract][Full Text] [Related]
9. In vitro studies of potent aldose reductase inhibitors: Synthesis, characterization, biological evaluation and docking analysis of rhodanine-3-hippuric acid derivatives. Celestina SK; Sundaram K; Ravi S Bioorg Chem; 2020 Apr; 97():103640. PubMed ID: 32086051 [TBL] [Abstract][Full Text] [Related]
10. New 5-ylidene rhodanine derivatives based on the dispacamide A model. Guiheneuf S; Paquin L; Carreaux F; Durieu E; Roisnel T; Meijer L; Bazureau JP Mol Divers; 2014 May; 18(2):375-88. PubMed ID: 24584455 [TBL] [Abstract][Full Text] [Related]
11. The synthesis and SAR of rhodanines as novel class C beta-lactamase inhibitors. Grant EB; Guiadeen D; Baum EZ; Foleno BD; Jin H; Montenegro DA; Nelson EA; Bush K; Hlasta DJ Bioorg Med Chem Lett; 2000 Oct; 10(19):2179-82. PubMed ID: 11012024 [TBL] [Abstract][Full Text] [Related]
12. Design, synthesis and evaluation of rhodanine derivatives as aldose reductase inhibitors. Agrawal YP; Agrawal MY; Gupta AK Chem Biol Drug Des; 2015 Feb; 85(2):172-80. PubMed ID: 24903533 [TBL] [Abstract][Full Text] [Related]
13. Recent developments with rhodanine as a scaffold for drug discovery. Kaminskyy D; Kryshchyshyn A; Lesyk R Expert Opin Drug Discov; 2017 Dec; 12(12):1233-1252. PubMed ID: 29019278 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, activity, and molecular modeling of new 2, 4-dioxo-5-(naphthylmethylene)-3-thiazolidineacetic acids and 2-thioxo analogues as potent aldose reductase inhibitors. Fresneau P; Cussac M; Morand JM; Szymonski B; Tranqui D; Leclerc G J Med Chem; 1998 Nov; 41(24):4706-15. PubMed ID: 9822541 [TBL] [Abstract][Full Text] [Related]
15. Novel rhodanine based inhibitors of aldose reductase of non-acidic nature with p-hydroxybenzylidene functional group. Kratky M; Sramel P; Bodo P; Prnova MS; Kovacikova L; Majekova M; Vinsova J; Stefek M Eur J Med Chem; 2023 Jan; 246():114922. PubMed ID: 36455357 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Ahn JH; Kim SJ; Park WS; Cho SY; Ha JD; Kim SS; Kang SK; Jeong DG; Jung SK; Lee SH; Kim HM; Park SK; Lee KH; Lee CW; Ryu SE; Choi JK Bioorg Med Chem Lett; 2006 Jun; 16(11):2996-9. PubMed ID: 16530413 [TBL] [Abstract][Full Text] [Related]
18. Rhodanine as a privileged scaffold in drug discovery. Tomasić T; Masic LP Curr Med Chem; 2009; 16(13):1596-629. PubMed ID: 19442136 [TBL] [Abstract][Full Text] [Related]
19. Molecular modeling studies of the binding modes of aldose reductase inhibitors at the active site of human aldose reductase. Lee YS; Chen Z; Kador PF Bioorg Med Chem; 1998 Oct; 6(10):1811-9. PubMed ID: 9839011 [TBL] [Abstract][Full Text] [Related]
20. Design, synthesis, SAR and biological investigation of 3-(carboxymethyl)rhodanine and aminothiazole inhibitors of Mycobacterium tuberculosis Zmp1. Mori M; Deodato D; Kasula M; Ferraris DM; Sanna A; De Logu A; Rizzi M; Botta M Bioorg Med Chem Lett; 2018 Feb; 28(4):637-641. PubMed ID: 29395975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]