These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 21854005)
1. Aqueous-phase OH oxidation of glyoxal: application of a novel analytical approach employing aerosol mass spectrometry and complementary off-line techniques. Lee AK; Zhao R; Gao SS; Abbatt JP J Phys Chem A; 2011 Sep; 115(38):10517-26. PubMed ID: 21854005 [TBL] [Abstract][Full Text] [Related]
2. Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol. Tan Y; Perri MJ; Seitzinger SP; Turpin BJ Environ Sci Technol; 2009 Nov; 43(21):8105-12. PubMed ID: 19924930 [TBL] [Abstract][Full Text] [Related]
3. Heterogeneous glyoxal oxidation: a potential source of secondary organic aerosol. Connelly BM; De Haan DO; Tolbert MA J Phys Chem A; 2012 Jun; 116(24):6180-7. PubMed ID: 22510110 [TBL] [Abstract][Full Text] [Related]
4. Photo-oxidation of low-volatility organics found in motor vehicle emissions: production and chemical evolution of organic aerosol mass. Miracolo MA; Presto AA; Lambe AT; Hennigan CJ; Donahue NM; Kroll JH; Worsnop DR; Robinson AL Environ Sci Technol; 2010 Mar; 44(5):1638-43. PubMed ID: 20121083 [TBL] [Abstract][Full Text] [Related]
5. Secondary organic aerosol formation by self-reactions of methylglyoxal and glyoxal in evaporating droplets. De Haan DO; Corrigan AL; Tolbert MA; Jimenez JL; Wood SE; Turley JJ Environ Sci Technol; 2009 Nov; 43(21):8184-90. PubMed ID: 19924942 [TBL] [Abstract][Full Text] [Related]
6. Measurements of secondary organic aerosol formed from OH-initiated photo-oxidation of isoprene using online photoionization aerosol mass spectrometry. Fang W; Gong L; Zhang Q; Cao M; Li Y; Sheng L Environ Sci Technol; 2012 Apr; 46(7):3898-904. PubMed ID: 22397593 [TBL] [Abstract][Full Text] [Related]
7. Model analysis of secondary organic aerosol formation by glyoxal in laboratory studies: the case for photoenhanced chemistry. Sumner AJ; Woo JL; McNeill VF Environ Sci Technol; 2014 Oct; 48(20):11919-25. PubMed ID: 25226456 [TBL] [Abstract][Full Text] [Related]
8. Online and offline mass spectrometric study of the impact of oxidation and ageing on glyoxal chemistry and uptake onto ammonium sulfate aerosols. Hamilton JF; Baeza-Romero MT; Finessi E; Rickard AR; Healy RM; Peppe S; Adams TJ; Daniels MJ; Ball SM; Goodall IC; Monks PS; Borrás E; Muñoz A Faraday Discuss; 2013; 165():447-72. PubMed ID: 24601017 [TBL] [Abstract][Full Text] [Related]
9. Investigation of aqueous-phase photooxidation of glyoxal and methylglyoxal by aerosol chemical ionization mass spectrometry: observation of hydroxyhydroperoxide formation. Zhao R; Lee AK; Abbatt JP J Phys Chem A; 2012 Jun; 116(24):6253-63. PubMed ID: 22296207 [TBL] [Abstract][Full Text] [Related]
10. Ammonium addition (and aerosol pH) has a dramatic impact on the volatility and yield of glyoxal secondary organic aerosol. Ortiz-Montalvo DL; Häkkinen SA; Schwier AN; Lim YB; McNeill VF; Turpin BJ Environ Sci Technol; 2014; 48(1):255-62. PubMed ID: 24328102 [TBL] [Abstract][Full Text] [Related]
11. The statistical evolution of multiple generations of oxidation products in the photochemical aging of chemically reduced organic aerosol. Wilson KR; Smith JD; Kessler SH; Kroll JH Phys Chem Chem Phys; 2012 Jan; 14(4):1468-79. PubMed ID: 22158973 [TBL] [Abstract][Full Text] [Related]
13. Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene. Surratt JD; Murphy SM; Kroll JH; Ng NL; Hildebrandt L; Sorooshian A; Szmigielski R; Vermeylen R; Maenhaut W; Claeys M; Flagan RC; Seinfeld JH J Phys Chem A; 2006 Aug; 110(31):9665-90. PubMed ID: 16884200 [TBL] [Abstract][Full Text] [Related]
14. Hydroxyl radical regeneration in the photochemical oxidation of glyoxal: kinetics and mechanism of the HC(O)CO + O(2) reaction. da Silva G Phys Chem Chem Phys; 2010 Jul; 12(25):6698-705. PubMed ID: 20424780 [TBL] [Abstract][Full Text] [Related]
15. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products. Aljawhary D; Zhao R; Lee AK; Wang C; Abbatt JP J Phys Chem A; 2016 Mar; 120(9):1395-407. PubMed ID: 26299576 [TBL] [Abstract][Full Text] [Related]
17. Mimicking the atmospheric OH-radical-mediated photooxidation of isoprene: formation of cloud-condensation nuclei polyols monitored by electrospray ionization mass spectrometry. Santos LS; Dalmázio I; Eberlin MN; Claeys M; Augusti R Rapid Commun Mass Spectrom; 2006; 20(14):2104-8. PubMed ID: 16767687 [TBL] [Abstract][Full Text] [Related]
18. Hydrolysis of glyoxal in water-restricted environments: formation of organic aerosol precursors through formic acid catalysis. Hazra MK; Francisco JS; Sinha A J Phys Chem A; 2014 Jun; 118(23):4095-105. PubMed ID: 24831426 [TBL] [Abstract][Full Text] [Related]
19. Organic matrix effects on the formation of light-absorbing compounds from α-dicarbonyls in aqueous salt solution. Drozd GT; McNeill VF Environ Sci Process Impacts; 2014 Apr; 16(4):741-7. PubMed ID: 24356644 [TBL] [Abstract][Full Text] [Related]
20. Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of alpha-pinene degradation and secondary organic aerosol formation. Librando V; Tringali G J Environ Manage; 2005 May; 75(3):275-82. PubMed ID: 15829369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]