These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. NL MIND-BEST: a web server for ligands and proteins discovery--theoretic-experimental study of proteins of Giardia lamblia and new compounds active against Plasmodium falciparum. González-Díaz H; Prado-Prado F; Sobarzo-Sánchez E; Haddad M; Maurel Chevalley S; Valentin A; Quetin-Leclercq J; Dea-Ayuela MA; Teresa Gomez-Muños M; Munteanu CR; José Torres-Labandeira J; García-Mera X; Tapia RA; Ubeira FM J Theor Biol; 2011 May; 276(1):229-49. PubMed ID: 21277861 [TBL] [Abstract][Full Text] [Related]
5. In silico classification of human maximum recommended daily dose based on modified random forest and substructure fingerprint. Cao DS; Hu QN; Xu QS; Yang YN; Zhao JC; Lu HM; Zhang LX; Liang YZ Anal Chim Acta; 2011 Apr; 692(1-2):50-6. PubMed ID: 21501711 [TBL] [Abstract][Full Text] [Related]
6. Random forests ensemble classifier trained with data resampling strategy to improve cardiac arrhythmia diagnosis. Ozçift A Comput Biol Med; 2011 May; 41(5):265-71. PubMed ID: 21419401 [TBL] [Abstract][Full Text] [Related]
7. Prediction of lambda(max) of 1,4-naphthoquinone derivatives using ant colony optimization. Atabati M; Zarei K; Mohsennia M Anal Chim Acta; 2010 Mar; 663(1):7-10. PubMed ID: 20172089 [TBL] [Abstract][Full Text] [Related]
8. Peak selection from MALDI-TOF mass spectra using ant colony optimization. Ressom HW; Varghese RS; Drake SK; Hortin GL; Abdel-Hamid M; Loffredo CA; Goldman R Bioinformatics; 2007 Mar; 23(5):619-26. PubMed ID: 17237065 [TBL] [Abstract][Full Text] [Related]
10. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers. Barenboim M; Masso M; Vaisman II; Jamison DC Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470 [TBL] [Abstract][Full Text] [Related]
11. Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes. Zhang TL; Ding YS Amino Acids; 2007 Nov; 33(4):623-9. PubMed ID: 17308864 [TBL] [Abstract][Full Text] [Related]
12. Modified ant colony optimization algorithm for variable selection in QSAR modeling: QSAR studies of cyclooxygenase inhibitors. Shen Q; Jiang JH; Tao JC; Shen GL; Yu RQ J Chem Inf Model; 2005; 45(4):1024-9. PubMed ID: 16045297 [TBL] [Abstract][Full Text] [Related]
13. Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Prado-Prado FJ; González-Díaz H; de la Vega OM; Ubeira FM; Chou KC Bioorg Med Chem; 2008 Jun; 16(11):5871-80. PubMed ID: 18485714 [TBL] [Abstract][Full Text] [Related]
14. Prediction of protein-glucose binding sites using support vector machines. Nassif H; Al-Ali H; Khuri S; Keirouz W Proteins; 2009 Oct; 77(1):121-32. PubMed ID: 19415755 [TBL] [Abstract][Full Text] [Related]
15. An ant colony optimization based algorithm for identifying gene regulatory elements. Liu W; Chen H; Chen L Comput Biol Med; 2013 Aug; 43(7):922-32. PubMed ID: 23746735 [TBL] [Abstract][Full Text] [Related]
16. Variable selection for QSAR by artificial ant colony systems. Izrailev S; Agrafiotis DK SAR QSAR Environ Res; 2002; 13(3-4):417-23. PubMed ID: 12184383 [TBL] [Abstract][Full Text] [Related]
17. Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods. Lv W; Xue Y Eur J Med Chem; 2010 Mar; 45(3):1167-72. PubMed ID: 20053484 [TBL] [Abstract][Full Text] [Related]