These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21854362)

  • 1. Application of hyperthermia for cancer treatment: recent patents review.
    Soares PI; Ferreira IM; Igreja RA; Novo CM; Borges JP
    Recent Pat Anticancer Drug Discov; 2012 Jan; 7(1):64-73. PubMed ID: 21854362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization.
    Mejías R; Hernández Flores P; Talelli M; Tajada-Herráiz JL; Brollo MEF; Portilla Y; Morales MP; Barber DF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):340-355. PubMed ID: 30525392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical applications of magnetic nanoparticles for hyperthermia.
    Thiesen B; Jordan A
    Int J Hyperthermia; 2008 Sep; 24(6):467-74. PubMed ID: 18608593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cancer Therapy; Prospects for Application of Nanoparticles for Magnetic-Based Hyperthermia.
    Rahban D; Doostan M; Salimi A
    Cancer Invest; 2020 Sep; 38(8-9):507-521. PubMed ID: 32870068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern.
    Salloum M; Ma R; Zhu L
    Int J Hyperthermia; 2009 Jun; 25(4):309-21. PubMed ID: 19670098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of magnetic nanoparticles in biomedical applications.
    Naqvi S; Samim M; Dinda AK; Iqbal Z; Telagoanker S; Ahmed FJ; Maitra A
    Recent Pat Drug Deliv Formul; 2009 Jun; 3(2):153-61. PubMed ID: 19519575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of monodisperse magnetic nanorods for improving hyperthermia efficacy.
    Zhao S; Hao N; Zhang JXJ; Hoopes PJ; Shubitidze F; Chen Z
    J Nanobiotechnology; 2021 Mar; 19(1):63. PubMed ID: 33648501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro hyperthermic effect of magnetic fluid on cervical and breast cancer cells.
    Bhardwaj A; Parekh K; Jain N
    Sci Rep; 2020 Sep; 10(1):15249. PubMed ID: 32943662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo applications of magnetic nanoparticle hyperthermia.
    Hilger I
    Int J Hyperthermia; 2013 Dec; 29(8):828-34. PubMed ID: 24219800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promising approaches in using magnetic nanoparticles in oncology.
    Mikhaylov G; Vasiljeva O
    Biol Chem; 2011 Nov; 392(11):955-60. PubMed ID: 21848508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular hyperthermia: Nanobubbles and their biomedical applications.
    Wen D
    Int J Hyperthermia; 2009 Nov; 25(7):533-41. PubMed ID: 19848616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted magnetic hyperthermia.
    Stone R; Willi T; Rosen Y; Mefford OT; Alexis F
    Ther Deliv; 2011 Jun; 2(6):815-38. PubMed ID: 22822511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles for thermal cancer therapy.
    Day ES; Morton JG; West JL
    J Biomech Eng; 2009 Jul; 131(7):074001. PubMed ID: 19640133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment.
    Espinosa A; Di Corato R; Kolosnjaj-Tabi J; Flaud P; Pellegrino T; Wilhelm C
    ACS Nano; 2016 Feb; 10(2):2436-46. PubMed ID: 26766814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Reconstruction Method for the Estimation of Temperatures of Multiple Sources Applied for Nanoparticle-Mediated Hyperthermia.
    Steinberg I; Tamir G; Gannot I
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29547502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy.
    Shaterabadi Z; Nabiyouni G; Soleymani M
    Prog Biophys Mol Biol; 2018 Mar; 133():9-19. PubMed ID: 28993133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation the tumor temperature in magnetic nanoparticle hyperthermia by infrared thermography: Phantom and numerical studies.
    Ma M; Zhang Y; Gu N
    J Therm Biol; 2018 Aug; 76():89-94. PubMed ID: 30143303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.