BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 21854684)

  • 41. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis.
    Cross-Disorder Group of the Psychiatric Genomics Consortium
    Lancet; 2013 Apr; 381(9875):1371-1379. PubMed ID: 23453885
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genes regulated by BCL11B during T-cell development are enriched for de novo mutations found in schizophrenia patients.
    Fahey L; Donohoe G; Broin PÓ; Morris DW
    Am J Med Genet B Neuropsychiatr Genet; 2020 Sep; 183(6):370-379. PubMed ID: 32729240
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Meta-analysis of GABRB2 polymorphisms and the risk of schizophrenia combined with GWAS data of the Han Chinese population and psychiatric genomics consortium.
    Zhang T; Li J; Yu H; Shi Y; Li Z; Wang L; Wang Z; Lu T; Wang L; Yue W; Zhang D
    PLoS One; 2018; 13(6):e0198690. PubMed ID: 29894498
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression analysis and genotyping of DGKZ: a GWAS-derived risk gene for schizophrenia.
    Alinaghi S; Alehabib E; Johari AH; Vafaei F; Salehi S; Darvish H; Ghaedi H
    Mol Biol Rep; 2019 Aug; 46(4):4105-4111. PubMed ID: 31087244
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies.
    Mocellin S; Tropea S; Benna C; Rossi CR
    BMC Med; 2018 Feb; 16(1):20. PubMed ID: 29455641
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of the joint effect of SNPs to identify independent loci and allelic heterogeneity in schizophrenia GWAS data.
    Polushina T; Giddaluru S; Bettella F; Espeseth T; Lundervold AJ; Djurovic S; Cichon S; Hoffmann P; Nöthen MM; Steen VM; Andreassen OA; Le Hellard S
    Transl Psychiatry; 2017 Dec; 7(12):1289. PubMed ID: 29249828
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Paradox of schizophrenia genetics: is a paradigm shift occurring?
    Doi N; Hoshi Y; Itokawa M; Yoshikawa T; Ichikawa T; Arai M; Usui C; Tachikawa H
    Behav Brain Funct; 2012 May; 8():28. PubMed ID: 22650965
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polygenic overlap between schizophrenia risk and antipsychotic response: a genomic medicine approach.
    Ruderfer DM; Charney AW; Readhead B; Kidd BA; Kähler AK; Kenny PJ; Keiser MJ; Moran JL; Hultman CM; Scott SA; Sullivan PF; Purcell SM; Dudley JT; Sklar P
    Lancet Psychiatry; 2016 Apr; 3(4):350-7. PubMed ID: 26915512
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comprehensive analysis of schizophrenia-associated loci highlights ion channel pathways and biologically plausible candidate causal genes.
    Pers TH; Timshel P; Ripke S; Lent S; Sullivan PF; O'Donovan MC; Franke L; Hirschhorn JN;
    Hum Mol Genet; 2016 Mar; 25(6):1247-54. PubMed ID: 26755824
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biological insights from 108 schizophrenia-associated genetic loci.
    Schizophrenia Working Group of the Psychiatric Genomics Consortium
    Nature; 2014 Jul; 511(7510):421-7. PubMed ID: 25056061
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Widespread signatures of positive selection in common risk alleles associated to autism spectrum disorder.
    Polimanti R; Gelernter J
    PLoS Genet; 2017 Feb; 13(2):e1006618. PubMed ID: 28187187
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Association of tagging single nucleotide polymorphisms on 8 candidate genes in dopaminergic pathway with schizophrenia in Croatian population.
    Pal P; Mihanović M; Molnar S; Xi H; Sun G; Guha S; Jeran N; Tomljenović A; Malnar A; Missoni S; Deka R; Rudan P
    Croat Med J; 2009 Aug; 50(4):361-9. PubMed ID: 19673036
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Systematic re-evaluation of genes from candidate gene association studies in migraine using a large genome-wide association data set.
    de Vries B; Anttila V; Freilinger T; Wessman M; Kaunisto MA; Kallela M; Artto V; Vijfhuizen LS; Göbel H; Dichgans M; Kubisch C; Ferrari MD; Palotie A; Terwindt GM; van den Maagdenberg AM;
    Cephalalgia; 2016 Jun; 36(7):604-14. PubMed ID: 25633374
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations.
    Lasky-Su J; Neale BM; Franke B; Anney RJ; Zhou K; Maller JB; Vasquez AA; Chen W; Asherson P; Buitelaar J; Banaschewski T; Ebstein R; Gill M; Miranda A; Mulas F; Oades RD; Roeyers H; Rothenberger A; Sergeant J; Sonuga-Barke E; Steinhausen HC; Taylor E; Daly M; Laird N; Lange C; Faraone SV
    Am J Med Genet B Neuropsychiatr Genet; 2008 Dec; 147B(8):1345-54. PubMed ID: 18821565
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic Markers of Human Evolution Are Enriched in Schizophrenia.
    Srinivasan S; Bettella F; Mattingsdal M; Wang Y; Witoelar A; Schork AJ; Thompson WK; Zuber V; ; Winsvold BS; Zwart JA; Collier DA; Desikan RS; Melle I; Werge T; Dale AM; Djurovic S; Andreassen OA
    Biol Psychiatry; 2016 Aug; 80(4):284-292. PubMed ID: 26681495
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dissociation of accumulated genetic risk and disease severity in patients with schizophrenia.
    Papiol S; Malzahn D; Kästner A; Sperling S; Begemann M; Stefansson H; Bickeböller H; Nave KA; Ehrenreich H
    Transl Psychiatry; 2011 Oct; 1(10):e45. PubMed ID: 22833191
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of genes affected by human evolution marker GNA13 in schizophrenia.
    Xiang B; Yang J; Zhang J; Yu M; Huang C; He W; Lei W; Chen J; Liu K
    Prog Neuropsychopharmacol Biol Psychiatry; 2020 Mar; 98():109764. PubMed ID: 31676466
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetic evidence for role of integration of fast and slow neurotransmission in schizophrenia.
    Devor A; Andreassen OA; Wang Y; Mäki-Marttunen T; Smeland OB; Fan CC; Schork AJ; Holland D; Thompson WK; Witoelar A; Chen CH; Desikan RS; McEvoy LK; Djurovic S; Greengard P; Svenningsson P; Einevoll GT; Dale AM
    Mol Psychiatry; 2017 Jun; 22(6):792-801. PubMed ID: 28348379
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data.
    Wang Q; Chen R; Cheng F; Wei Q; Ji Y; Yang H; Zhong X; Tao R; Wen Z; Sutcliffe JS; Liu C; Cook EH; Cox NJ; Li B
    Nat Neurosci; 2019 May; 22(5):691-699. PubMed ID: 30988527
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Integration analysis of methylation quantitative trait loci and GWAS identify three schizophrenia risk variants.
    Yu H; Cheng W; Zhang X; Wang X; Yue W
    Neuropsychopharmacology; 2020 Jun; 45(7):1179-1187. PubMed ID: 31910432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.