BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 21854969)

  • 1. Modulation of the brain's functional network architecture in the transition from wake to sleep.
    Larson-Prior LJ; Power JD; Vincent JL; Nolan TS; Coalson RS; Zempel J; Snyder AZ; Schlaggar BL; Raichle ME; Petersen SE
    Prog Brain Res; 2011; 193():277-94. PubMed ID: 21854969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the brain's default mode network from wakefulness to slow wave sleep.
    Sämann PG; Wehrle R; Hoehn D; Spoormaker VI; Peters H; Tully C; Holsboer F; Czisch M
    Cereb Cortex; 2011 Sep; 21(9):2082-93. PubMed ID: 21330468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous fMRI activity during resting wakefulness and sleep.
    Duyn J
    Prog Brain Res; 2011; 193():295-305. PubMed ID: 21854970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep sleep divides the cortex into opposite modes of anatomical-functional coupling.
    Tagliazucchi E; Crossley N; Bullmore ET; Laufs H
    Brain Struct Funct; 2016 Nov; 221(8):4221-4234. PubMed ID: 26650048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered thalamocortical and intra-thalamic functional connectivity during light sleep compared with wake.
    Hale JR; White TP; Mayhew SD; Wilson RS; Rollings DT; Khalsa S; Arvanitis TN; Bagshaw AP
    Neuroimage; 2016 Jan; 125():657-667. PubMed ID: 26499809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional connectivity dynamics slow with descent from wakefulness to sleep.
    El-Baba M; Lewis DJ; Fang Z; Owen AM; Fogel SM; Morton JB
    PLoS One; 2019; 14(12):e0224669. PubMed ID: 31790422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a complete taxonomy of resting state networks across wakefulness and sleep: an assessment of spatially distinct resting state networks using independent component analysis.
    Houldin E; Fang Z; Ray LB; Owen AM; Fogel SM
    Sleep; 2019 Mar; 42(3):. PubMed ID: 30476346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connectivity dynamics from wakefulness to sleep.
    Damaraju E; Tagliazucchi E; Laufs H; Calhoun VD
    Neuroimage; 2020 Oct; 220():117047. PubMed ID: 32562782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG microstates of wakefulness and NREM sleep.
    Brodbeck V; Kuhn A; von Wegner F; Morzelewski A; Tagliazucchi E; Borisov S; Michel CM; Laufs H
    Neuroimage; 2012 Sep; 62(3):2129-39. PubMed ID: 22658975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variations in connectivity in the sensorimotor and default-mode networks during the first nocturnal sleep cycle.
    Wu CW; Liu PY; Tsai PJ; Wu YC; Hung CS; Tsai YC; Cho KH; Biswal BB; Chen CJ; Lin CP
    Brain Connect; 2012; 2(4):177-90. PubMed ID: 22817652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging roles of the brain's default network.
    Mantini D; Vanduffel W
    Neuroscientist; 2013 Feb; 19(1):76-87. PubMed ID: 22785104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoupling of the brain's default mode network during deep sleep.
    Horovitz SG; Braun AR; Carr WS; Picchioni D; Balkin TJ; Fukunaga M; Duyn JH
    Proc Natl Acad Sci U S A; 2009 Jul; 106(27):11376-81. PubMed ID: 19549821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep.
    Stevner ABA; Vidaurre D; Cabral J; Rapuano K; Nielsen SFV; Tagliazucchi E; Laufs H; Vuust P; Deco G; Woolrich MW; Van Someren E; Kringelbach ML
    Nat Commun; 2019 Mar; 10(1):1035. PubMed ID: 30833560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional neuroanatomy of sleep and circadian rhythms.
    Rosenwasser AM
    Brain Res Rev; 2009 Oct; 61(2):281-306. PubMed ID: 19695288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional connectivity of the human hypothalamus during wakefulness and nonrapid eye movement sleep.
    Jiang J; Zou G; Liu J; Zhou S; Xu J; Sun H; Zou Q; Gao JH
    Hum Brain Mapp; 2021 Aug; 42(11):3667-3679. PubMed ID: 33960583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the effective connectivity of resting state networks using conditional Granger causality.
    Liao W; Mantini D; Zhang Z; Pan Z; Ding J; Gong Q; Yang Y; Chen H
    Biol Cybern; 2010 Jan; 102(1):57-69. PubMed ID: 19937337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleep spindles and hippocampal functional connectivity in human NREM sleep.
    Andrade KC; Spoormaker VI; Dresler M; Wehrle R; Holsboer F; Sämann PG; Czisch M
    J Neurosci; 2011 Jul; 31(28):10331-9. PubMed ID: 21753010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous brain activity in the newborn brain during natural sleep--an fMRI study in infants born at full term.
    Fransson P; Skiöld B; Engström M; Hallberg B; Mosskin M; Aden U; Lagercrantz H; Blennow M
    Pediatr Res; 2009 Sep; 66(3):301-5. PubMed ID: 19531974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans.
    Rebollo I; Devauchelle AD; Béranger B; Tallon-Baudry C
    Elife; 2018 Mar; 7():. PubMed ID: 29561263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hard to wake up? The cerebral correlates of sleep inertia assessed using combined behavioral, EEG and fMRI measures.
    Vallat R; Meunier D; Nicolas A; Ruby P
    Neuroimage; 2019 Jan; 184():266-278. PubMed ID: 30223060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.