These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
844 related articles for article (PubMed ID: 21855077)
1. Comparison of the gradient kinetic performance of silica monolithic capillary columns with columns packed with 3 μm porous and 2.7 μm fused-core silica particles. Vaast A; Broeckhoven K; Dolman S; Desmet G; Eeltink S J Chromatogr A; 2012 Mar; 1228():270-5. PubMed ID: 21855077 [TBL] [Abstract][Full Text] [Related]
2. Band broadening in fast gradient high-performance liquid chromatography: application to the second generation of 4.6 mm I.D. silica monolithic columns. Gritti F; Guiochon G J Chromatogr A; 2012 May; 1238():77-90. PubMed ID: 22503619 [TBL] [Abstract][Full Text] [Related]
3. Estimation and optimization of the peak capacity of one-dimensional gradient high performance liquid chromatography using a long monolithic silica capillary column. Horie K; Sato Y; Kimura T; Nakamura T; Ishihama Y; Oda Y; Ikegami T; Tanaka N J Chromatogr A; 2012 Mar; 1228():283-91. PubMed ID: 22265351 [TBL] [Abstract][Full Text] [Related]
4. Impact of pore structural parameters on column performance and resolution of reversed-phase monolithic silica columns for peptides and proteins. Skudas R; Grimes BA; Machtejevas E; Kudirkaite V; Kornysova O; Hennessy TP; Lubda D; Unger KK J Chromatogr A; 2007 Mar; 1144(1):72-84. PubMed ID: 17084406 [TBL] [Abstract][Full Text] [Related]
5. Characterization of new types of stationary phases for fast liquid chromatographic applications. Fekete S; Fekete J; Ganzler K J Pharm Biomed Anal; 2009 Dec; 50(5):703-9. PubMed ID: 19560301 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the fast gradient performance of new prototype silica monolithic columns and columns packed with fully porous and core-shell particles. Gritti F; Tanaka N; Guiochon G J Chromatogr A; 2012 May; 1236():28-41. PubMed ID: 22444427 [TBL] [Abstract][Full Text] [Related]
7. Parameters affecting the separation of intact proteins in gradient-elution reversed-phase chromatography using poly(styrene-co-divinylbenzene) monolithic capillary columns. Detobel F; Broeckhoven K; Wellens J; Wouters B; Swart R; Ursem M; Desmet G; Eeltink S J Chromatogr A; 2010 Apr; 1217(18):3085-90. PubMed ID: 20347095 [TBL] [Abstract][Full Text] [Related]
9. High-resolution peptide separations using nano-LC at ultra-high pressure. Nováková L; Vaast A; Stassen C; Broeckhoven K; De Pra M; Swart R; Desmet G; Eeltink S J Sep Sci; 2013 Apr; 36(7):1192-9. PubMed ID: 23457143 [TBL] [Abstract][Full Text] [Related]
10. Fast gradient screening of pharmaceuticals with 5 cm long, narrow bore reversed-phase columns packed with sub-3 μm core-shell and sub-2 μm totally porous particles. Fekete S; Fekete J Talanta; 2011 Apr; 84(2):416-23. PubMed ID: 21376967 [TBL] [Abstract][Full Text] [Related]
11. High efficiency, high temperature separations on silica based monolithic columns. Rogeberg M; Wilson SR; Malerod H; Lundanes E; Tanaka N; Greibrokk T J Chromatogr A; 2011 Oct; 1218(41):7281-8. PubMed ID: 21899856 [TBL] [Abstract][Full Text] [Related]
12. Kinetic performance comparison of a capillary monolithic and a fused-core column in micro-scale liquid chromatography. Diószegi TA; Raynie DE J Chromatogr A; 2012 Oct; 1261():107-12. PubMed ID: 22964047 [TBL] [Abstract][Full Text] [Related]
13. Practical comparison of 2.7 microm fused-core silica particles and porous sub-2 microm particles for fast separations in pharmaceutical process development. Abrahim A; Al-Sayah M; Skrdla P; Bereznitski Y; Chen Y; Wu N J Pharm Biomed Anal; 2010 Jan; 51(1):131-7. PubMed ID: 19758782 [TBL] [Abstract][Full Text] [Related]
14. Efficiency of the new sub-2 μm core-shell (Kinetex™) column in practice, applied for small and large molecule separation. Fekete S; Ganzler K; Fekete J J Pharm Biomed Anal; 2011 Feb; 54(3):482-90. PubMed ID: 20940092 [TBL] [Abstract][Full Text] [Related]
15. High-efficiency liquid chromatography-mass spectrometry separations with 50 mm, 250 mm, and 1 m long polymer-based monolithic capillary columns for the characterization of complex proteolytic digests. Eeltink S; Dolman S; Detobel F; Swart R; Ursem M; Schoenmakers PJ J Chromatogr A; 2010 Oct; 1217(43):6610-5. PubMed ID: 20382391 [TBL] [Abstract][Full Text] [Related]
16. Limit of the speed-resolution properties in adiabatic supercritical fluid chromatography. Gritti F; Guiochon G J Chromatogr A; 2013 Jun; 1295():114-27. PubMed ID: 23672980 [TBL] [Abstract][Full Text] [Related]
18. Comparative study of recent wide-pore materials of different stationary phase morphology, applied for the reversed-phase analysis of recombinant monoclonal antibodies. Fekete S; Veuthey JL; Eeltink S; Guillarme D Anal Bioanal Chem; 2013 Apr; 405(10):3137-51. PubMed ID: 23358675 [TBL] [Abstract][Full Text] [Related]
19. Comparison of columns packed with porous sub-2 microm particles and superficially porous sub-3 microm particles for peptide analysis at ambient and high temperature. Ruta J; Guillarme D; Rudaz S; Veuthey JL J Sep Sci; 2010 Aug; 33(16):2465-77. PubMed ID: 20658489 [TBL] [Abstract][Full Text] [Related]
20. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography. Gritti F; Horvath K; Guiochon G J Chromatogr A; 2012 Nov; 1263():84-98. PubMed ID: 23040978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]