These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21855215)

  • 1. Tail-end Hg capture on Au/carbon-monolith regenerable sorbents.
    Izquierdo MT; Ballestero D; Juan R; García-Díez E; Rubio B; Ruiz C; Pino MR
    J Hazard Mater; 2011 Oct; 193():304-10. PubMed ID: 21855215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of temperature and regeneration cycles on Hg capture and efficiency by structured Au/C regenerable sorbents.
    Ballestero D; Gómez-Giménez C; García-Díez E; Juan R; Rubio B; Izquierdo MT
    J Hazard Mater; 2013 Sep; 260():247-54. PubMed ID: 23774780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.
    Rodríguez-Pérez J; López-Antón MA; Díaz-Somoano M; García R; Martínez-Tarazona MR
    J Hazard Mater; 2013 Sep; 260():869-77. PubMed ID: 23876255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery.
    Xie J; Qu Z; Yan N; Yang S; Chen W; Hu L; Huang W; Liu P
    J Hazard Mater; 2013 Oct; 261():206-13. PubMed ID: 23933289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury(II).
    Liu CW; Huang CC; Chang HT
    Langmuir; 2008 Aug; 24(15):8346-50. PubMed ID: 18582003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant.
    Liu Y; Kelly DJ; Yang H; Lin CC; Kuznicki SM; Xu Z
    Environ Sci Technol; 2008 Aug; 42(16):6205-10. PubMed ID: 18767688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stripping voltammetric detection of mercury(II) based on a bimetallic Au-Pt inorganic-organic hybrid nanocomposite modified glassy carbon electrode.
    Gong J; Zhou T; Song D; Zhang L; Hu X
    Anal Chem; 2010 Jan; 82(2):567-73. PubMed ID: 20014816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric assay for mercury (II) based on mercury-specific deoxyribonucleic acid-functionalized gold nanoparticles.
    Wu J; Li L; Zhu D; He P; Fang Y; Cheng G
    Anal Chim Acta; 2011 May; 694(1-2):115-9. PubMed ID: 21565311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silica-Silver Nanocomposites as Regenerable Sorbents for Hg
    Cao T; Li Z; Xiong Y; Yang Y; Xu S; Bisson T; Gupta R; Xu Z
    Environ Sci Technol; 2017 Oct; 51(20):11909-11917. PubMed ID: 28823171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noble metal-based sorbents: A way to avoid new waste after mercury removal.
    Antuña-Nieto C; Rodríguez E; Lopez-Anton MA; García R; Martínez-Tarazona MR
    J Hazard Mater; 2020 Dec; 400():123168. PubMed ID: 32563907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification.
    Zhu Z; Su Y; Li J; Li D; Zhang J; Song S; Zhao Y; Li G; Fan C
    Anal Chem; 2009 Sep; 81(18):7660-6. PubMed ID: 19691296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk.
    El-Shafey EI
    J Hazard Mater; 2010 Mar; 175(1-3):319-27. PubMed ID: 19883976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bench-scale studies of in-duct mercury capture using cupric chloride-impregnated carbons.
    Lee SS; Lee JY; Keener TC
    Environ Sci Technol; 2009 Apr; 43(8):2957-62. PubMed ID: 19475977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorimetric response to mercury-induced abstraction of triethylene glycol ligands from a gold nanoparticle surface.
    Hirayama T; Taki M; Kashiwagi Y; Nakamoto M; Kunishita A; Itoh S; Yamamoto Y
    Dalton Trans; 2008 Sep; (35):4705-7. PubMed ID: 18728875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spirally oriented Au microelectrode array sensor for detection of Hg (II).
    Huan TN; Hung le Q; Ha VT; Anh NH; Van Khai T; Shim KB; Chung H
    Talanta; 2012 May; 94():284-8. PubMed ID: 22608449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.
    Li D; Han J; Han L; Wang J; Chang L
    J Environ Sci (China); 2014 Jul; 26(7):1497-504. PubMed ID: 25079999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a carbon nanocomposite electrode based on amino acids functionalized gold nanoparticles for trace electrochemical detection of mercury.
    Safavi A; Farjami E
    Anal Chim Acta; 2011 Feb; 688(1):43-8. PubMed ID: 21296203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury adsorption on a carbon sorbent derived from fruit shell of Terminalia catappa.
    Inbaraj BS; Sulochana N
    J Hazard Mater; 2006 May; 133(1-3):283-90. PubMed ID: 16326005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Au NPs-enhanced surface plasmon resonance for sensitive detection of mercury(II) ions.
    Wang L; Li T; Du Y; Chen C; Li B; Zhou M; Dong S
    Biosens Bioelectron; 2010 Aug; 25(12):2622-6. PubMed ID: 20547052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Galvanically replaced Au-Pd nanostructures: study of their enhanced elemental mercury sorption capacity over gold.
    Lay B; Sabri YM; Ippolito SJ; Bhargava SK
    Phys Chem Chem Phys; 2014 Sep; 16(36):19522-9. PubMed ID: 25103307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.