These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21855392)

  • 1. Quantification of the accuracy of MRI generated 3D models of long bones compared to CT generated 3D models.
    Rathnayaka K; Momot KI; Noser H; Volp A; Schuetz MA; Sahama T; Schmutz B
    Med Eng Phys; 2012 Apr; 34(3):357-63. PubMed ID: 21855392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction of step artefact associated with MRI scanning of long bones.
    Rathnayaka K; Cowin G; Schuetz MA; Sahama T; Schmutz B
    Med Eng Phys; 2013 Jul; 35(7):988-93. PubMed ID: 23040049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions.
    Rathnayaka K; Sahama T; Schuetz MA; Schmutz B
    Med Eng Phys; 2011 Mar; 33(2):226-33. PubMed ID: 21030288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative accuracy of lower limb bone geometry determined using MRI, CT, and direct bone 3D models.
    Stephen JM; Calder JD; Williams A; El Daou H
    J Orthop Res; 2021 Sep; 39(9):1870-1876. PubMed ID: 33222265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy analysis of three-dimensional bone surface models of the forearm constructed from multidetector computed tomography data.
    Oka K; Murase T; Moritomo H; Goto A; Sugamoto K; Yoshikawa H
    Int J Med Robot; 2009 Dec; 5(4):452-7. PubMed ID: 19722285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can magnetic resonance imaging-derived bone models be used for accurate motion measurement with single-plane three-dimensional shape registration?
    Moro-oka TA; Hamai S; Miura H; Shimoto T; Higaki H; Fregly BJ; Iwamoto Y; Banks SA
    J Orthop Res; 2007 Jul; 25(7):867-72. PubMed ID: 17290431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The quality of bone surfaces may govern the use of model based fluoroscopy in the determination of joint laxity.
    Moewis P; Wolterbeek N; Diederichs G; Valstar E; Heller MO; Taylor WR
    Med Eng Phys; 2012 Dec; 34(10):1427-32. PubMed ID: 22342557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmentation accuracy of long bones.
    Van den Broeck J; Vereecke E; Wirix-Speetjens R; Vander Sloten J
    Med Eng Phys; 2014 Jul; 36(7):949-53. PubMed ID: 24768087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomical evaluation of CT-MRI combined femoral model.
    Lee YS; Seon JK; Shin VI; Kim GH; Jeon M
    Biomed Eng Online; 2008 Jan; 7():6. PubMed ID: 18234068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy assessment of CT-based outer surface femur meshes.
    Gelaude F; Vander Sloten J; Lauwers B
    Comput Aided Surg; 2008 Jul; 13(4):188-99. PubMed ID: 18622793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual forensic anthropology: The accuracy of osteometric analysis of 3D bone models derived from clinical computed tomography (CT) scans.
    Colman KL; de Boer HH; Dobbe JGG; Liberton NPTJ; Stull KE; van Eijnatten M; Streekstra GJ; Oostra RJ; van Rijn RR; van der Merwe AE
    Forensic Sci Int; 2019 Nov; 304():109963. PubMed ID: 31610335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of 3D bone models of the knee joint derived from CT and 3T MR imaging.
    Neubert A; Wilson KJ; Engstrom C; Surowiec RK; Paproki A; Johnson N; Crozier S; Fripp J; Ho CP
    Eur J Radiol; 2017 Aug; 93():178-184. PubMed ID: 28668413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of a generic 3D model of the distal femur.
    Schmutz B; Reynolds KJ; Slavotinek JP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):305-12. PubMed ID: 17132616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomical evaluation and stress distribution of intact canine femur.
    Verim O; Tasgetiren S; Er MS; Ozdemir V; Yuran AF
    Int J Med Robot; 2013 Mar; 9(1):103-8. PubMed ID: 22987569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Customization of a generic 3D model of the distal femur using diagnostic radiographs.
    Schmutz B; Reynolds KJ; Slavotinek JP
    J Med Eng Technol; 2008; 32(2):156-61. PubMed ID: 18297506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic extraction of proximal femur contours from calibrated X-ray images using 3D statistical models: an in vitro study.
    Dong X; Zheng G
    Int J Med Robot; 2009 Jun; 5(2):213-22. PubMed ID: 19343704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D automatic anatomy segmentation based on iterative graph-cut-ASM.
    Chen X; Bagci U
    Med Phys; 2011 Aug; 38(8):4610-22. PubMed ID: 21928634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Registration of 2D x-ray images to 3D MRI by generating pseudo-CT data.
    van der Bom MJ; Pluim JP; Gounis MJ; van de Kraats EB; Sprinkhuizen SM; Timmer J; Homan R; Bartels LW
    Phys Med Biol; 2011 Feb; 56(4):1031-43. PubMed ID: 21258138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of MRI-based bone outline definition errors on external radiotherapy dose calculation accuracy in heterogeneous pseudo-CT images of prostate cancer patients.
    Korhonen J; Kapanen M; Keyriläinen J; Seppälä T; Tuomikoski L; Tenhunen M
    Acta Oncol; 2014 Aug; 53(8):1100-6. PubMed ID: 24998163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatomical comparison and evaluation of human proximal femurs modeling via different devices and FEM analysis.
    Verim Ö; Taşgetiren S; Er MS; Timur M; Yuran AF
    Int J Med Robot; 2013 Jun; 9(2):e19-24. PubMed ID: 22711421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.