These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 21855564)

  • 1. Computer-aided studies on the regulation of oxidative phosphorylation during work transitions.
    Korzeniewski B
    Prog Biophys Mol Biol; 2011 Nov; 107(2):274-85. PubMed ID: 21855564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of oxidative phosphorylation during work transitions results from its kinetic properties.
    Korzeniewski B
    J Appl Physiol (1985); 2014 Jan; 116(1):83-94. PubMed ID: 24157529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of oxidative phosphorylation through each-step activation (ESA): Evidences from computer modeling.
    Korzeniewski B
    Prog Biophys Mol Biol; 2017 May; 125():1-23. PubMed ID: 27939921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of oxidative phosphorylation through parallel activation.
    Korzeniewski B
    Biophys Chem; 2007 Sep; 129(2-3):93-110. PubMed ID: 17566629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of oxidative phosphorylation in intact mammalian heart in vivo.
    Korzeniewski B; Noma A; Matsuoka S
    Biophys Chem; 2005 Jul; 116(2):145-57. PubMed ID: 15950827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of oxidative phosphorylation in different muscles and various experimental conditions.
    Korzeniewski B
    Biochem J; 2003 Nov; 375(Pt 3):799-804. PubMed ID: 12901719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The modeling of oxidative phosphorylation in skeletal muscle.
    Korzeniewski B
    Jpn J Physiol; 2004 Dec; 54(6):511-6. PubMed ID: 15760482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological heart activation by adrenaline involves parallel activation of ATP usage and supply.
    Korzeniewski B; Deschodt-Arsac V; Calmettes G; Franconi JM; Diolez P
    Biochem J; 2008 Jul; 413(2):343-7. PubMed ID: 18377364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen consumption and metabolite concentrations during transitions between different work intensities in heart.
    Korzeniewski B
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1466-74. PubMed ID: 16679405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenine nucleotide regulation in pancreatic beta-cells: modeling of ATP/ADP-Ca2+ interactions.
    Fridlyand LE; Ma L; Philipson LH
    Am J Physiol Endocrinol Metab; 2005 Nov; 289(5):E839-48. PubMed ID: 15985450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell.
    Diederichs F
    Bull Math Biol; 2006 Oct; 68(7):1779-818. PubMed ID: 16832733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle.
    Korzeniewski B; Liguzinski P
    Biophys Chem; 2004 Jul; 110(1-2):147-69. PubMed ID: 15223151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training-induced adaptation of oxidative phosphorylation in skeletal muscles.
    Korzeniewski B; Zoladz JA
    Biochem J; 2003 Aug; 374(Pt 1):37-40. PubMed ID: 12741955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in INS-1E clonal beta cells.
    Akhmedov D; Braun M; Mataki C; Park KS; Pozzan T; Schoonjans K; Rorsman P; Wollheim CB; Wiederkehr A
    FASEB J; 2010 Nov; 24(11):4613-26. PubMed ID: 20647546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue variation in the control of oxidative phosphorylation: implication for mitochondrial diseases.
    Rossignol R; Letellier T; Malgat M; Rocher C; Mazat JP
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):45-53. PubMed ID: 10727400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in situ study of bioenergetic properties of human colorectal cancer: the regulation of mitochondrial respiration and distribution of flux control among the components of ATP synthasome.
    Kaldma A; Klepinin A; Chekulayev V; Mado K; Shevchuk I; Timohhina N; Tepp K; Kandashvili M; Varikmaa M; Koit A; Planken M; Heck K; Truu L; Planken A; Valvere V; Rebane E; Kaambre T
    Int J Biochem Cell Biol; 2014 Oct; 55():171-86. PubMed ID: 25218857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of cardiac work transitions, in vitro: effects of simultaneous Ca2+ and ATPase additions on isolated porcine heart mitochondria.
    Territo PR; French SA; Balaban RS
    Cell Calcium; 2001 Jul; 30(1):19-27. PubMed ID: 11396984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico studies on the sensitivity of myocardial PCr/ATP to changes in mitochondrial enzyme activity and oxygen concentration.
    Edwards LM; Ashrafian H; Korzeniewski B
    Mol Biosyst; 2011 Dec; 7(12):3335-42. PubMed ID: 22025222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some factors determining the PCr recovery overshoot in skeletal muscle.
    Korzeniewski B; Zoladz JA
    Biophys Chem; 2005 Jul; 116(2):129-36. PubMed ID: 15950825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of metabolism: the rest-to-work transition in skeletal muscle.
    Wilson DF
    Am J Physiol Endocrinol Metab; 2015 Nov; 309(9):E793-801. PubMed ID: 26394666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.