These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
52 related articles for article (PubMed ID: 21855564)
21. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Pesta D; Gnaiger E Methods Mol Biol; 2012; 810():25-58. PubMed ID: 22057559 [TBL] [Abstract][Full Text] [Related]
23. Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. Ebenhöh O; Heinrich R Bull Math Biol; 2001 Jan; 63(1):21-55. PubMed ID: 11146883 [TBL] [Abstract][Full Text] [Related]
24. Mitochondrial medicine--molecular pathology of defective oxidative phosphorylation. Fosslien E Ann Clin Lab Sci; 2001 Jan; 31(1):25-67. PubMed ID: 11314862 [TBL] [Abstract][Full Text] [Related]
25. Introduction to mitochondrial oxidative phosphorylation. Kadenbach B Adv Exp Med Biol; 2012; 748():1-11. PubMed ID: 22729852 [TBL] [Abstract][Full Text] [Related]
26. Programming and regulation of metabolic homeostasis. Wilson DF Am J Physiol Endocrinol Metab; 2015 Mar; 308(6):E506-17. PubMed ID: 25605644 [TBL] [Abstract][Full Text] [Related]
27. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation. Wilson DF; Vinogradov SA J Appl Physiol (1985); 2014 Dec; 117(12):1431-9. PubMed ID: 25324518 [TBL] [Abstract][Full Text] [Related]
28. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms. Zoladz JA; Korzeniewski B; Grassi B J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():67-84. PubMed ID: 17242492 [TBL] [Abstract][Full Text] [Related]
29. Computational Modeling of Substrate-Dependent Mitochondrial Respiration and Bioenergetics in the Heart and Kidney Cortex and Outer Medulla. Sadri S; Zhang X; Audi SH; Cowley AW; Dash RK Function (Oxf); 2023; 4(5):zqad038. PubMed ID: 37575476 [TBL] [Abstract][Full Text] [Related]
30. Each-step activation of oxidative phosphorylation is necessary to explain muscle metabolic kinetic responses to exercise and recovery in humans. Korzeniewski B; Rossiter HB J Physiol; 2015 Dec; 593(24):5255-68. PubMed ID: 26503399 [TBL] [Abstract][Full Text] [Related]
32. NAD(+)/NADH and skeletal muscle mitochondrial adaptations to exercise. White AT; Schenk S Am J Physiol Endocrinol Metab; 2012 Aug; 303(3):E308-21. PubMed ID: 22436696 [TBL] [Abstract][Full Text] [Related]
33. Regulation of oxidative phosphorylation through parallel activation. Korzeniewski B Biophys Chem; 2007 Sep; 129(2-3):93-110. PubMed ID: 17566629 [TBL] [Abstract][Full Text] [Related]
34. Regulation of oxidative phosphorylation in intact mammalian heart in vivo. Korzeniewski B; Noma A; Matsuoka S Biophys Chem; 2005 Jul; 116(2):145-57. PubMed ID: 15950827 [TBL] [Abstract][Full Text] [Related]
35. Computer-aided studies on the regulation of oxidative phosphorylation during work transitions. Korzeniewski B Prog Biophys Mol Biol; 2011 Nov; 107(2):274-85. PubMed ID: 21855564 [TBL] [Abstract][Full Text] [Related]
36. Regulation of oxidative phosphorylation during work transitions results from its kinetic properties. Korzeniewski B J Appl Physiol (1985); 2014 Jan; 116(1):83-94. PubMed ID: 24157529 [TBL] [Abstract][Full Text] [Related]
37. Regulation of oxidative phosphorylation through each-step activation (ESA): Evidences from computer modeling. Korzeniewski B Prog Biophys Mol Biol; 2017 May; 125():1-23. PubMed ID: 27939921 [TBL] [Abstract][Full Text] [Related]