These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 21855575)

  • 1. A high-throughput screening assay of ascorbate in brain samples.
    Belikova NA; Glumac AL; Kapralova V; Cheikhi A; Tyurina YY; Vagni VA; Kochanek PM; Kagan VE; Bayir H
    J Neurosci Methods; 2011 Sep; 201(1):185-90. PubMed ID: 21855575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron paramagnetic resonance studies on nitroxide radical 2,2,5,5-tetramethyl-4-piperidin-1-oxyl (TEMPO) redox reactions in human skin.
    Fuchs J; Groth N; Herrling T; Zimmer G
    Free Radic Biol Med; 1997; 22(6):967-76. PubMed ID: 9034235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress following traumatic brain injury in rats: quantitation of biomarkers and detection of free radical intermediates.
    Tyurin VA; Tyurina YY; Borisenko GG; Sokolova TV; Ritov VB; Quinn PJ; Rose M; Kochanek P; Graham SH; Kagan VE
    J Neurochem; 2000 Nov; 75(5):2178-89. PubMed ID: 11032908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple and sensitive assay for ascorbate using a plate reader.
    Vislisel JM; Schafer FQ; Buettner GR
    Anal Biochem; 2007 Jun; 365(1):31-9. PubMed ID: 17433246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of relative configuration of TEMPO-type nitroxides on ascorbate reduction.
    Azuma R; Yamasaki T; Emoto MC; Sato-Akaba H; Sano K; Munekane M; Fujii HG; Mukai T
    Free Radic Biol Med; 2023 Jan; 194():114-122. PubMed ID: 36442586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of antioxidant reserves and oxidative stress in cerebrospinal fluid after severe traumatic brain injury in infants and children.
    Bayir H; Kagan VE; Tyurina YY; Tyurin V; Ruppel RA; Adelson PD; Graham SH; Janesko K; Clark RS; Kochanek PM
    Pediatr Res; 2002 May; 51(5):571-8. PubMed ID: 11978879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmatic antioxidant capacity due to ascorbate using TEMPO scavenging and electron spin resonance.
    Piehl LL; Facorro GB; Huarte MG; Desimone MF; Copello GJ; Díaz LE; de Celis ER
    Clin Chim Acta; 2005 Sep; 359(1-2):78-88. PubMed ID: 15919072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ionic strength on the binding of ascorbate to albumin.
    Lozinsky E; Novoselsky A; Glaser R; Shames AI; Likhtenshtein GI; Meyerstein D
    Biochim Biophys Acta; 2002 Jul; 1571(3):239-44. PubMed ID: 12090938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An electron paramagnetic resonance study of the antioxidant properties of the nitroxide free radical TEMPO.
    Voest EE; van Faassen E; Marx JJ
    Free Radic Biol Med; 1993 Dec; 15(6):589-95. PubMed ID: 8138184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and thermodynamic aspects of the chain-breaking antioxidant activity of ascorbic acid derivatives in non-aqueous media.
    Amorati R; Pedulli GF; Valgimigli L
    Org Biomol Chem; 2011 May; 9(10):3792-800. PubMed ID: 21479296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New approach for the detection of peptide- and protein-based radicals using a pre-fluorescent probe.
    Dang YM; Guo XQ
    Appl Spectrosc; 2006 Feb; 60(2):203-7. PubMed ID: 16542572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathione propagates oxidative stress triggered by myeloperoxidase in HL-60 cells. Evidence for glutathionyl radical-induced peroxidation of phospholipids and cytotoxicity.
    Borisenko GG; Martin I; Zhao Q; Amoscato AA; Tyurina YY; Kagan VE
    J Biol Chem; 2004 May; 279(22):23453-62. PubMed ID: 15039448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arachidonic acid-induced carbon-centered radicals and phospholipid peroxidation in cyclo-oxygenase-2-transfected PC12 cells.
    Jiang J; Borisenko GG; Osipov A; Martin I; Chen R; Shvedova AA; Sorokin A; Tyurina YY; Potapovich A; Tyurin VA; Graham SH; Kagan VE
    J Neurochem; 2004 Sep; 90(5):1036-49. PubMed ID: 15312159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute iron overload and oxidative stress in brain.
    Piloni NE; Fermandez V; Videla LA; Puntarulo S
    Toxicology; 2013 Dec; 314(1):174-82. PubMed ID: 24120471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the interaction between nitroxide free radical and conjugated polyelectrolytes by fluorimetry.
    Dou W; Su X
    Luminescence; 2009; 24(1):45-9. PubMed ID: 18814187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ascorbate- and dehydroascorbic acid-mediated reduction of free radicals in the human erythrocyte.
    Mehlhorn RJ
    J Biol Chem; 1991 Feb; 266(5):2724-31. PubMed ID: 1993652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the ascorbate free radical concentration in mixtures of ascorbate and dehydroascorbate.
    Van der Zee J; Van den Broek PJ
    Free Radic Biol Med; 1998 Aug; 25(3):282-6. PubMed ID: 9680173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo L-band ESR and quantitative pharmacokinetic analysis of stable spin probes in rats and mice.
    Nishino N; Yasui H; Sakurai H
    Free Radic Res; 1999 Jul; 31(1):35-51. PubMed ID: 10489118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitroxides scavenge myeloperoxidase-catalyzed thiyl radicals in model systems and in cells.
    Borisenko GG; Martin I; Zhao Q; Amoscato AA; Kagan VE
    J Am Chem Soc; 2004 Aug; 126(30):9221-32. PubMed ID: 15281811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NO-redox paradox: direct oxidation of alpha-tocopherol and alpha-tocopherol-mediated oxidation of ascorbate.
    Gorbunov NV; Osipov AN; Sweetland MA; Day BW; Elsayed NM; Kagan VE
    Biochem Biophys Res Commun; 1996 Feb; 219(3):835-41. PubMed ID: 8645266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.