These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21855886)

  • 1. In situ ligand exchange of thiol-capped CuInS2/ZnS quantum dots at growth stage without affecting luminescent characteristics.
    Kim H; Suh M; Kwon BH; Jang DS; Kim SW; Jeon DY
    J Colloid Interface Sci; 2011 Nov; 363(2):703-6. PubMed ID: 21855886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetically engineered Cd-free quantum dots as dual-modality probes for fluorescence/magnetic resonance imaging of tumors.
    Ding K; Jing L; Liu C; Hou Y; Gao M
    Biomaterials; 2014 Feb; 35(5):1608-17. PubMed ID: 24239108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninjection, one-pot synthesis of Cu-deficient CuInS2/ZnS core/shell quantum dots and their fluorescent properties.
    Nam DE; Song WS; Yang H
    J Colloid Interface Sci; 2011 Sep; 361(2):491-6. PubMed ID: 21665220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminescence and stability of aqueous thioalkyl acid capped CdSe/ZnS quantum dots correlated to ligand ionization.
    Algar WR; Krull UJ
    Chemphyschem; 2007 Mar; 8(4):561-8. PubMed ID: 17274093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multidentate surface ligand exchange for the immobilization of CdSe/ZnS quantum dots and surface quantum dot-oligonucleotide conjugates.
    Algar WR; Krull UJ
    Langmuir; 2008 May; 24(10):5514-20. PubMed ID: 18412378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large Stokes Shift and High Efficiency Luminescent Solar Concentrator Incorporated with CuInS2/ZnS Quantum Dots.
    Li C; Chen W; Wu D; Quan D; Zhou Z; Hao J; Qin J; Li Y; He Z; Wang K
    Sci Rep; 2015 Dec; 5():17777. PubMed ID: 26642815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach.
    Wang M; Zhang M; Qian J; Zhao F; Shen L; Scholes GD; Winnik MA
    Langmuir; 2009 Oct; 25(19):11732-40. PubMed ID: 19788225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dithiocarbamates as capping ligands for water-soluble quantum dots.
    Zhang Y; Schnoes AM; Clapp AR
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3384-95. PubMed ID: 21053924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified ligand-exchange for efficient solubilization of CdSe/ZnS quantum dots in water: a procedure guided by computational studies.
    Pong BK; Trout BL; Lee JY
    Langmuir; 2008 May; 24(10):5270-6. PubMed ID: 18412382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-engineered quantum dots for the labeling of hydrophobic microdomains in bacterial biofilms.
    Aldeek F; Mustin C; Balan L; Roques-Carmes T; Fontaine-Aupart MP; Schneider R
    Biomaterials; 2011 Aug; 32(23):5459-70. PubMed ID: 21549423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes.
    Sun M; Zhu D; Ji W; Jing P; Wang X; Xiang W; Zhao J
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12681-8. PubMed ID: 24206570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors.
    Shi L; Rosenzweig N; Rosenzweig Z
    Anal Chem; 2007 Jan; 79(1):208-14. PubMed ID: 17194141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zero reduction luminescence of aqueous-phase alloy core/shell quantum dots via rapid ambient-condition ligand exchange.
    Le TH; Kim S; Chae S; Choi Y; Park CS; Heo E; Lee U; Kim H; Kwon OS; Im WB; Yoon H
    J Colloid Interface Sci; 2020 Mar; 564():88-98. PubMed ID: 31911231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-sensitive ligand for luminescent quantum dots.
    Tomasulo M; Yildiz I; Kaanumalle SL; Raymo FM
    Langmuir; 2006 Nov; 22(24):10284-90. PubMed ID: 17107034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface passivation of luminescent colloidal quantum dots with poly(dimethylaminoethyl methacrylate) through a ligand exchange process.
    Wang XS; Dykstra TE; Salvador MR; Manners I; Scholes GD; Winnik MA
    J Am Chem Soc; 2004 Jun; 126(25):7784-5. PubMed ID: 15212519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifunctional multidentate ligand modified highly stable water-soluble quantum dots.
    Liu L; Guo X; Li Y; Zhong X
    Inorg Chem; 2010 Apr; 49(8):3768-75. PubMed ID: 20329710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source.
    Byun HJ; Song WS; Yang H
    Nanotechnology; 2011 Jun; 22(23):235605. PubMed ID: 21483087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly luminescent CdSe/Cd(x)Zn(1-x)S quantum dots coated with thickness-controlled SiO2 shell through silanization.
    Yang P; Ando M; Murase N
    Langmuir; 2011 Aug; 27(15):9535-40. PubMed ID: 21732647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvothermal synthesis of InP quantum dots and their enhanced luminescent efficiency by post-synthetic treatments.
    Byun HJ; Lee JC; Yang H
    J Colloid Interface Sci; 2011 Mar; 355(1):35-41. PubMed ID: 21194707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and photoluminescence of ZnS quantum dots.
    Wang YH; Chen Z; Zhou XQ
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1312-5. PubMed ID: 18468145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.