These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 21856223)
41. Glutantβase: a database for improving the rational design of glucose-tolerant β-glucosidases. Mariano D; Pantuza N; Santos LH; Rocha REO; de Lima LHF; Bleicher L; de Melo-Minardi RC BMC Mol Cell Biol; 2020 Jul; 21(1):50. PubMed ID: 32611314 [TBL] [Abstract][Full Text] [Related]
42. Identification and Characterization of Two Endogenous β-Glucosidases from the Termite Coptotermes formosanus. Feng T; Liu H; Xu Q; Sun J; Shi H Appl Biochem Biotechnol; 2015 Aug; 176(7):2039-52. PubMed ID: 26054618 [TBL] [Abstract][Full Text] [Related]
43. A mechanism of glucose tolerance and stimulation of GH1 β-glucosidases. Yang Y; Zhang X; Yin Q; Fang W; Fang Z; Wang X; Zhang X; Xiao Y Sci Rep; 2015 Nov; 5():17296. PubMed ID: 26603650 [TBL] [Abstract][Full Text] [Related]
44. Cloning and characterization of a beta-glucosidase from marine microbial metagenome with excellent glucose tolerance. Fang Z; Fang W; Liu J; Hong Y; Peng H; Zhang X; Sun B; Xiao Y J Microbiol Biotechnol; 2010 Sep; 20(9):1351-8. PubMed ID: 20890102 [TBL] [Abstract][Full Text] [Related]
45. Characterization of a cold-active β-glucosidase from Paenibacillus xylanilyticus KJ-03 capable of hydrolyzing isoflavones daidzin and genistin. Park DJ; Lee YS; Choi YL Protein J; 2013 Oct; 32(7):579-84. PubMed ID: 24141566 [TBL] [Abstract][Full Text] [Related]
46. Exchanging a single amino acid residue generates or weakens a +2 cellooligosaccharide binding subsite in rice β-glucosidases. Sansenya S; Maneesan J; Cairns JR Carbohydr Res; 2012 Apr; 351():130-3. PubMed ID: 22341501 [TBL] [Abstract][Full Text] [Related]
47. Simultaneous Enhancement of Thermostability and Catalytic Activity of a Metagenome-Derived β-Glucosidase Using Directed Evolution for the Biosynthesis of Butyl Glucoside. Yin B; Hui Q; Kashif M; Yu R; Chen S; Ou Q; Wu B; Jiang C Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31835569 [TBL] [Abstract][Full Text] [Related]
48. Structural and functional analyses of beta-glucosidase 3B from Thermotoga neapolitana: a thermostable three-domain representative of glycoside hydrolase 3. Pozzo T; Pasten JL; Karlsson EN; Logan DT J Mol Biol; 2010 Apr; 397(3):724-39. PubMed ID: 20138890 [TBL] [Abstract][Full Text] [Related]
49. Mechanistic consequences of mutation of active site carboxylates in a retaining beta-1,4-glycanase from Cellulomonas fimi. MacLeod AM; Tull D; Rupitz K; Warren RA; Withers SG Biochemistry; 1996 Oct; 35(40):13165-72. PubMed ID: 8855954 [TBL] [Abstract][Full Text] [Related]
50. A novel β-glucosidase from Kim DH; Kim DH; Lee SH; Kim KH Biotechnol Biofuels; 2018; 11():64. PubMed ID: 29563967 [TBL] [Abstract][Full Text] [Related]
51. Expression in Trichoderma reesei and characterisation of a thermostable family 3 beta-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Murray P; Aro N; Collins C; Grassick A; Penttilä M; Saloheimo M; Tuohy M Protein Expr Purif; 2004 Dec; 38(2):248-57. PubMed ID: 15555940 [TBL] [Abstract][Full Text] [Related]
52. Substrate specificity and transglycosylation catalyzed by a thermostable beta-glucosidase from marine hyperthermophile Thermotoga neapolitana. Park TH; Choi KW; Park CS; Lee SB; Kang HY; Shon KJ; Park JS; Cha J Appl Microbiol Biotechnol; 2005 Dec; 69(4):411-22. PubMed ID: 16082555 [TBL] [Abstract][Full Text] [Related]
53. A single amino acid residue determines the ratio of hydrolysis to transglycosylation catalyzed by β-glucosidases. Frutuoso MA; Marana SR Protein Pept Lett; 2013 Jan; 20(1):102-6. PubMed ID: 22670763 [TBL] [Abstract][Full Text] [Related]
54. Purification and characterization of a thermostable intra-cellular beta-glucosidase with transglycosylation properties from filamentous fungus Termitomyces clypeatus. Pal S; Banik SP; Ghorai S; Chowdhury S; Khowala S Bioresour Technol; 2010 Apr; 101(7):2412-20. PubMed ID: 20031400 [TBL] [Abstract][Full Text] [Related]
55. Characterization of a recombinant beta-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus. Hong MR; Kim YS; Park CS; Lee JK; Kim YS; Oh DK J Biosci Bioeng; 2009 Jul; 108(1):36-40. PubMed ID: 19577189 [TBL] [Abstract][Full Text] [Related]
56. Properties of a metagenome-derived beta-glucosidase from the contents of rabbit cecum. Feng Y; Duan CJ; Liu L; Tang JL; Feng JX Biosci Biotechnol Biochem; 2009 Jul; 73(7):1470-3. PubMed ID: 19584532 [TBL] [Abstract][Full Text] [Related]
57. Characterization and kinetic analysis of a thermostable GH3 beta-glucosidase from Penicillium brasilianum. Krogh KB; Harris PV; Olsen CL; Johansen KS; Hojer-Pedersen J; Borjesson J; Olsson L Appl Microbiol Biotechnol; 2010 Mar; 86(1):143-54. PubMed ID: 19756584 [TBL] [Abstract][Full Text] [Related]
58. Engineering the GH1 β-glucosidase from Humicola insolens: Insights on the stimulation of activity by glucose and xylose. Meleiro LP; Salgado JCS; Maldonado RF; Carli S; Moraes LAB; Ward RJ; Jorge JA; Furriel RPM PLoS One; 2017; 12(11):e0188254. PubMed ID: 29145480 [TBL] [Abstract][Full Text] [Related]
59. Understanding the glucose tolerance of an archaeon β-glucosidase from Thermococcus sp. Sinha SK; Prakash Reddy K; Datta S Carbohydr Res; 2019 Dec; 486():107835. PubMed ID: 31683072 [TBL] [Abstract][Full Text] [Related]
60. Function and structure relationships of a β-1,2-glucooligosaccharide-degrading β-glucosidase. Ishiguro R; Tanaka N; Abe K; Nakajima M; Maeda T; Miyanaga A; Takahashi Y; Sugimoto N; Nakai H; Taguchi H FEBS Lett; 2017 Dec; 591(23):3926-3936. PubMed ID: 29131329 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]