These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21856272)

  • 21. Delivery of small interfering RNA to mammalian cells in culture by using cationic lipid/polymer-based transfection reagents.
    Brazas RM; Hagstrom JE
    Methods Enzymol; 2005; 392():112-24. PubMed ID: 15644178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The two hit hypothesis: an improved method for siRNA-mediated gene silencing in stimulated primary human T cells.
    Freeley M; Long A
    J Immunol Methods; 2013 Oct; 396(1-2):116-27. PubMed ID: 23988722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A peptidomimetic siRNA transfection reagent for highly effective gene silencing.
    Utku Y; Dehan E; Ouerfelli O; Piano F; Zuckermann RN; Pagano M; Kirshenbaum K
    Mol Biosyst; 2006 Jun; 2(6-7):312-7. PubMed ID: 16880950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA.
    Spagnou S; Miller AD; Keller M
    Biochemistry; 2004 Oct; 43(42):13348-56. PubMed ID: 15491141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A procedure for efficient non-viral siRNA transfection of primary human monocytes using nucleofection.
    Scherer O; Maeß MB; Lindner S; Garscha U; Weinigel C; Rummler S; Werz O; Lorkowski S
    J Immunol Methods; 2015 Jul; 422():118-24. PubMed ID: 25891792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. siRNA stabilization prolongs gene knockdown in primary T lymphocytes.
    Mantei A; Rutz S; Janke M; Kirchhoff D; Jung U; Patzel V; Vogel U; Rudel T; Andreou I; Weber M; Scheffold A
    Eur J Immunol; 2008 Sep; 38(9):2616-25. PubMed ID: 18792414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved protocol for efficient nonviral transfection of premature THP-1 macrophages.
    Maess MB; Buers I; Robenek H; Lorkowski S
    Cold Spring Harb Protoc; 2011 May; 2011(5):pdb.prot5612. PubMed ID: 21536764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonviral genetic modification mediates effective transgene expression and functional RNA interference in human mesenchymal stem cells.
    Hoelters J; Ciccarella M; Drechsel M; Geissler C; Gülkan H; Böcker W; Schieker M; Jochum M; Neth P
    J Gene Med; 2005 Jun; 7(6):718-28. PubMed ID: 15712343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibiting the growth of malignant melanoma by blocking the expression of vascular endothelial growth factor using an RNA interference approach.
    Tao J; Tu YT; Huang CZ; Feng AP; Wu Q; Lian YJ; Zhang LX; Zhang XP; Shen GX
    Br J Dermatol; 2005 Oct; 153(4):715-24. PubMed ID: 16181451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A limitation of the method for siRNA delivery into primary human cytotrophoblast cells.
    Desforges M; Westwood M
    Placenta; 2011 Feb; 32(2):192-4. PubMed ID: 21146210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes.
    Inoh Y; Furuno T; Hirashima N; Kitamoto D; Nakanishi M
    Biochem Biophys Res Commun; 2011 Oct; 414(3):635-40. PubMed ID: 22001930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High efficiency transfection of glioma cell lines and primary cells for overexpression and RNAi experiments.
    Hagemann C; Meyer C; Stojic J; Eicker S; Gerngras S; Kühnel S; Roosen K; Vince GH
    J Neurosci Methods; 2006 Sep; 156(1-2):194-202. PubMed ID: 16621008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. siRNA-mediated down-regulation of survivin inhibits bladder cancer cell growth.
    Ning S; Fuessel S; Kotzsch M; Kraemer K; Kappler M; Schmidt U; Taubert H; Wirth MP; Meye A
    Int J Oncol; 2004 Oct; 25(4):1065-71. PubMed ID: 15375557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effective gene suppression using small interfering RNA in hard-to-transfect human T cells.
    Yin J; Ma Z; Selliah N; Shivers DK; Cron RQ; Finkel TH
    J Immunol Methods; 2006 May; 312(1-2):1-11. PubMed ID: 16603179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transfection of difficult-to-transfect primary mammalian cells.
    Gresch O; Altrogge L
    Methods Mol Biol; 2012; 801():65-74. PubMed ID: 21987247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA interference in vitro and in vivo using an arginine peptide/siRNA complex system.
    Kim SW; Kim NY; Choi YB; Park SH; Yang JM; Shin S
    J Control Release; 2010 May; 143(3):335-43. PubMed ID: 20079391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeted delivery of SiRNA to CD33-positive tumor cells with liposomal carrier systems.
    Rothdiener M; Müller D; Castro PG; Scholz A; Schwemmlein M; Fey G; Heidenreich O; Kontermann RE
    J Control Release; 2010 Jun; 144(2):251-8. PubMed ID: 20184933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization procedure for small interfering RNA transfection in a 384-well format.
    Borawski J; Lindeman A; Buxton F; Labow M; Gaither LA
    J Biomol Screen; 2007 Jun; 12(4):546-59. PubMed ID: 17435168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A tightly regulated and reversibly inducible siRNA expression system for conditional RNAi-mediated gene silencing in mammalian cells.
    Wu RH; Cheng TL; Lo SR; Hsu HC; Hung CF; Teng CF; Wu MP; Tsai WH; Chang WT
    J Gene Med; 2007 Jul; 9(7):620-34. PubMed ID: 17486668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Liposomal magnetofection.
    Mykhaylyk O; Sánchez-Antequera Y; Vlaskou D; Hammerschmid E; Anton M; Zelphati O; Plank C
    Methods Mol Biol; 2010; 605():487-525. PubMed ID: 20072903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.