BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21856299)

  • 1. The role of intramolecular interactions in the functional control of multiheme cytochromes c.
    Fonseca BM; Paquete CM; Salgueiro CA; Louro RO
    FEBS Lett; 2012 Mar; 586(5):504-9. PubMed ID: 21856299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of a highly conserved electrostatic interaction on the surface of cytochrome C in control of the redox function.
    Tai H; Mikami S; Irie K; Watanabe N; Shinohara N; Yamamoto Y
    Biochemistry; 2010 Jan; 49(1):42-8. PubMed ID: 19947659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox- and pH-linked conformational changes in triheme cytochrome PpcA from Geobacter sulfurreducens.
    Morgado L; Bruix M; Pokkuluri PR; Salgueiro CA; Turner DL
    Biochem J; 2017 Jan; 474(2):231-246. PubMed ID: 28062839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of multihaem cytochromes.
    Soares CM; Baptista AM
    FEBS Lett; 2012 Mar; 586(5):510-8. PubMed ID: 22020220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transfer patterns of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri.
    Raffalt AC; Schmidt L; Christensen HE; Chi Q; Ulstrup J
    J Inorg Biochem; 2009 May; 103(5):717-22. PubMed ID: 19217165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox equilibria in hydroxylamine oxidoreductase. Electrostatic control of electron redistribution in multielectron oxidative processes.
    Kurnikov IV; Ratner MA; Pacheco AA
    Biochemistry; 2005 Feb; 44(6):1856-63. PubMed ID: 15697211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and biochemical characterization of DHC2, a novel diheme cytochrome c from Geobacter sulfurreducens.
    Heitmann D; Einsle O
    Biochemistry; 2005 Sep; 44(37):12411-9. PubMed ID: 16156654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-linked conformational changes of a multiheme cytochrome from Geobacter sulfurreducens.
    Morgado L; Bruix M; Londer YY; Pokkuluri PR; Schiffer M; Salgueiro CA
    Biochem Biophys Res Commun; 2007 Aug; 360(1):194-8. PubMed ID: 17583674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principles and patterns in the interaction between mono-heme cytochrome c and its partners in electron transfer processes.
    Bertini I; Cavallaro G; Rosato A
    Metallomics; 2011 Apr; 3(4):354-62. PubMed ID: 21359406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional roles of the heme architecture and its environment in tetraheme cytochrome c.
    Akutsu H; Takayama Y
    Acc Chem Res; 2007 Mar; 40(3):171-8. PubMed ID: 17370988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium.
    Igarashi K; Yoshida M; Matsumura H; Nakamura N; Ohno H; Samejima M; Nishino T
    FEBS J; 2005 Jun; 272(11):2869-77. PubMed ID: 15943818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular electron transfer in nitrite reductases.
    Wherland S; Farver O; Pecht I
    Chemphyschem; 2005 May; 6(5):805-12. PubMed ID: 15884062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis for the electric field modulation of cytochrome C structure and function.
    De Biase PM; Paggi DA; Doctorovich F; Hildebrandt P; Estrin DA; Murgida DH; Marti MA
    J Am Chem Soc; 2009 Nov; 131(44):16248-56. PubMed ID: 19886701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classical force field parameters for the heme prosthetic group of cytochrome c.
    Autenrieth F; Tajkhorshid E; Baudry J; Luthey-Schulten Z
    J Comput Chem; 2004 Oct; 25(13):1613-22. PubMed ID: 15264255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular interactions between multihaem cytochromes: probing the protein-protein interactions between pentahaem cytochromes of a nitrite reductase complex.
    Lockwood C; Butt JN; Clarke TA; Richardson DJ
    Biochem Soc Trans; 2011 Jan; 39(1):263-8. PubMed ID: 21265785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of a novel dodecaheme cytochrome c from Geobacter sulfurreducens reveals an extended 12 nm protein with interacting hemes.
    Pokkuluri PR; Londer YY; Duke NE; Pessanha M; Yang X; Orshonsky V; Orshonsky L; Erickson J; Zagyanskiy Y; Salgueiro CA; Schiffer M
    J Struct Biol; 2011 Apr; 174(1):223-33. PubMed ID: 21130881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-coupled dynamics and folding in cytochrome c.
    Sagle LB; Zimmermann J; Matsuda S; Dawson PE; Romesberg FE
    J Am Chem Soc; 2006 Jun; 128(24):7909-15. PubMed ID: 16771505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function relationship in type II cytochrome c(3) from Desulfovibrio africanus: a novel function in a familiar heme core.
    Pereira PM; Pacheco I; Turner DL; Louro RO
    J Biol Inorg Chem; 2002 Sep; 7(7-8):815-22. PubMed ID: 12203018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-Bohr and other cooperativity effects in the nine-heme cytochrome C from Desulfovibrio desulfuricans ATCC 27774: crystallographic and modeling studies.
    Bento I; Teixeira VH; Baptista AM; Soares CM; Matias PM; Carrondo MA
    J Biol Chem; 2003 Sep; 278(38):36455-69. PubMed ID: 12750363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The solution structure of a tetraheme cytochrome from Shewanella frigidimarina reveals a novel family structural motif.
    Paixão VB; Salgueiro CA; Brennan L; Reid GA; Chapman SK; Turner DL
    Biochemistry; 2008 Nov; 47(46):11973-80. PubMed ID: 18950243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.