BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21856455)

  • 1. Chaperonins induce an amyloid-like transformation of ovine prion protein: the fundamental difference in action between eukaryotic TRiC and bacterial GroEL.
    Kiselev GG; Naletova IN; Sheval EV; Stroylova YY; Schmalhausen EV; Haertlé T; Muronetz VI
    Biochim Biophys Acta; 2011 Dec; 1814(12):1730-8. PubMed ID: 21856455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chaperonin TRiC is blocked by native and glycated prion protein.
    Kudryavtseva SS; Stroylova YY; Kurochkina LP; Muronetz VI
    Arch Biochem Biophys; 2020 Apr; 683():108319. PubMed ID: 32101762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The non-functioning chaperonin GroEL stimulates protein aggregation].
    Naletov IN; Shmal'gauzen EV; Shalova IN; Pleten' AP; Tsiriul'nikov K; Ertl' T; Muronets VI
    Biomed Khim; 2006; 52(5):518-24. PubMed ID: 17180927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain-specific chaperone-induced expansion is required for beta-actin folding: a comparison of beta-actin conformations upon interactions with GroEL and tail-less complex polypeptide 1 ring complex (TRiC).
    Villebeck L; Moparthi SB; Lindgren M; Hammarström P; Jonsson BH
    Biochemistry; 2007 Nov; 46(44):12639-47. PubMed ID: 17939680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of Chaperonin GroEL by a Monomer of Ovine Prion Protein and Its Oligomeric Forms.
    Kudryavtseva SS; Stroylova YY; Zanyatkin IA; Haertle T; Muronetz VI
    Biochemistry (Mosc); 2016 Oct; 81(10):1213-1220. PubMed ID: 27908246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaperonin-mediated de novo generation of prion protein aggregates.
    Stöckel J; Hartl FU
    J Mol Biol; 2001 Nov; 313(4):861-72. PubMed ID: 11697909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytosolic chaperonin protects folding intermediates of Gbeta from aggregation by recognizing hydrophobic beta-strands.
    Kubota S; Kubota H; Nagata K
    Proc Natl Acad Sci U S A; 2006 May; 103(22):8360-5. PubMed ID: 16717193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteriophage-encoded chaperonins stimulate prion protein fibrillation in an ATP-dependent manner.
    Leisi EV; Moiseenko AV; Kudryavtseva SS; Pozdyshev DV; Muronetz VI; Kurochkina LP
    Biochim Biophys Acta Proteins Proteom; 2024 Jan; 1872(1):140965. PubMed ID: 37739110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient production of native actin upon translation in a bacterial lysate supplemented with the eukaryotic chaperonin TRiC.
    Stemp MJ; Guha S; Hartl FU; Barral JM
    Biol Chem; 2005 Aug; 386(8):753-7. PubMed ID: 16201870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaperonin-co-chaperonin interactions.
    Boshoff A
    Subcell Biochem; 2015; 78():153-78. PubMed ID: 25487021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli.
    Gupta P; Aggarwal N; Batra P; Mishra S; Chaudhuri TK
    Int J Biochem Cell Biol; 2006; 38(11):1975-85. PubMed ID: 16822698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins.
    Spiess C; Miller EJ; McClellan AJ; Frydman J
    Mol Cell; 2006 Oct; 24(1):25-37. PubMed ID: 17018290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two families of chaperonin: physiology and mechanism.
    Horwich AL; Fenton WA; Chapman E; Farr GW
    Annu Rev Cell Dev Biol; 2007; 23():115-45. PubMed ID: 17489689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-homocysteinylation of ovine prion protein induces amyloid-like transformation.
    Stroylova YY; Chobert JM; Muronetz VI; Jakubowski H; Haertlé T
    Arch Biochem Biophys; 2012 Oct; 526(1):29-37. PubMed ID: 22782079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits.
    Frydman J; Nimmesgern E; Erdjument-Bromage H; Wall JS; Tempst P; Hartl FU
    EMBO J; 1992 Dec; 11(13):4767-78. PubMed ID: 1361170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of amyloid fibrils using the GroEL apical domain.
    Ojha B; Fukui N; Hongo K; Mizobata T; Kawata Y
    Sci Rep; 2016 Aug; 6():31041. PubMed ID: 27488469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Group II chaperonins: new TRiC(k)s and turns of a protein folding machine.
    Gutsche I; Essen LO; Baumeister W
    J Mol Biol; 1999 Oct; 293(2):295-312. PubMed ID: 10550210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytosolic chaperonins: a question of promiscuity.
    Clarke AR
    Mol Cell; 2006 Oct; 24(2):165-7. PubMed ID: 17052449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MgATP binding to the nucleotide-binding domains of the eukaryotic cytoplasmic chaperonin induces conformational changes in the putative substrate-binding domains.
    Szpikowska BK; Swiderek KM; Sherman MA; Mas MT
    Protein Sci; 1998 Jul; 7(7):1524-30. PubMed ID: 9684884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity in chaperonin-mediated protein folding.
    Tian G; Vainberg IE; Tap WD; Lewis SA; Cowan NJ
    Nature; 1995 May; 375(6528):250-3. PubMed ID: 7746329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.