BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2185745)

  • 1. Metabolism of hexacosatetraenoic acid (C26:4,n-6) in immature rat brain.
    Robinson BS; Johnson DW; Poulos A
    Biochem J; 1990 Apr; 267(2):561-4. PubMed ID: 2185745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long and very long chain polyunsaturated fatty acids of the n-6 series in rat seminiferous tubules. Active desaturation of 24:4n-6 to 24:5n-6 and concomitant formation of odd and even chain tetraenoic and pentaenoic fatty acids up to C32.
    Aveldaño MI; Robinson BS; Johnson DW; Poulos A
    J Biol Chem; 1993 Jun; 268(16):11663-9. PubMed ID: 8505297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of saturated and polyunsaturated very-long-chain fatty acids in fibroblasts from patients with defects in peroxisomal beta-oxidation.
    Street JM; Singh H; Poulos A
    Biochem J; 1990 Aug; 269(3):671-7. PubMed ID: 2117919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique molecular species of phosphatidylcholine containing very-long-chain (C24-C38) polyenoic fatty acids in rat brain.
    Robinson BS; Johnson DW; Poulos A
    Biochem J; 1990 Feb; 265(3):763-7. PubMed ID: 2306213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Very long-chain fatty acids in peroxisomal disease.
    Poulos A; Beckman K; Johnson DW; Paton BC; Robinson BS; Sharp P; Usher S; Singh H
    Adv Exp Med Biol; 1992; 318():331-40. PubMed ID: 1378993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and lipid distribution of polyenoic very-long-chain fatty acids in the brain of peroxisome-deficient patients (Zellweger syndrome).
    Sharp P; Poulos A; Fellenberg A; Johnson D
    Biochem J; 1987 Nov; 248(1):61-7. PubMed ID: 3435449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active synthesis of C24:5, n-3 fatty acid in retina.
    Rotstein NP; Pennacchiotti GL; Sprecher H; Aveldaño MI
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):859-64. PubMed ID: 8670163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in the metabolism of eicosatetraenoic (20:4(n - 6)), tetracosatetraenoic (24:4(n - 6)) and triacontatetraenoic (30:4(n - 6)) acids in human neutrophils.
    Robinson BS; Johnson DW; Ferrante A; Poulos A
    Biochim Biophys Acta; 1994 Aug; 1213(3):325-34. PubMed ID: 8049246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation into phospholipid classes and metabolism via desaturation and elongation of various 14C-labelled (n-3) and (n-6) polyunsaturated fatty acids in trout astrocytes in primary culture.
    Tocher DR; Sargent JR
    J Neurochem; 1990 Jun; 54(6):2118-24. PubMed ID: 2338561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation and metabolic conversion of saturated and unsaturated fatty acids in SK-Hep1 human hepatoma cells in culture.
    Marra CA; de Alaniz MJ
    Mol Cell Biochem; 1992 Nov; 117(2):107-18. PubMed ID: 1336810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of the metabolism of [3-14C]-labeled 22- and 24-carbon (n-3) and (n-6) unsaturated fatty acids by rat testes and liver.
    Yin FQ; Chen Q; Sprecher H
    Biochim Biophys Acta; 1999 Apr; 1438(1):63-72. PubMed ID: 10216281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of eicosa-11,14-dienoic acid in rat testes. Evidence for delta8-desaturase activity.
    Albert DH; Coniglio JG
    Biochim Biophys Acta; 1977 Dec; 489(3):390-6. PubMed ID: 588579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chain elongation-desaturation of linoleic acid during the development of the pig. Implications for the supply of polyenoic fatty acids to the developing brain.
    Purvis JM; Clandinin MT; Hacker RR
    Comp Biochem Physiol B; 1983; 75(2):199-204. PubMed ID: 6872512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chain elongation and desaturation of eicosapentaenoate to docosahexaenoate and phospholipid labeling in the rat retina in vivo.
    Bazan HE; Careaga MM; Sprecher H; Bazan NG
    Biochim Biophys Acta; 1982 Jul; 712(1):123-8. PubMed ID: 6288109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positional isomers of unsaturated fatty acids in rat liver lipids.
    Schmitz B; Murawski U; Pflüger M; Egge H
    Lipids; 1977 Mar; 12(3):307-13. PubMed ID: 846319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of triacylglycerol in the metabolism of fatty acids by cultured neuroblastoma and glioma cells.
    Cook HW; Clarke JT; Spence MW
    J Lipid Res; 1982 Dec; 23(9):1292-300. PubMed ID: 7161559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo synthesis of long-chain fatty acids from (1-14C) acetate in the renal papillae of rats.
    Bojesen I; Bojesen E; Capito K
    Biochim Biophys Acta; 1976 Jan; 424(1):8-16. PubMed ID: 1252483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of saturated and polyunsaturated fatty acids by normal and Zellweger syndrome skin fibroblasts.
    Street JM; Johnson DW; Singh H; Poulos A
    Biochem J; 1989 Jun; 260(3):647-55. PubMed ID: 2504148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The synthesis of lipids from [1-14C]acetate by isolated rat brain capillaries.
    Homayoun P; Roux F; Niel E; Bourre JM
    Neurosci Lett; 1985 Nov; 62(1):143-7. PubMed ID: 3906444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of the metabolism of n-9, n-6 and n-3 fatty acids in testicular cells from immature rat.
    Retterstøl K; Haugen TB; Woldseth B; Christophersen BO
    Biochim Biophys Acta; 1998 May; 1392(1):59-72. PubMed ID: 9593823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.