BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 21857653)

  • 1. Host S-nitrosylation inhibits clostridial small molecule-activated glucosylating toxins.
    Savidge TC; Urvil P; Oezguen N; Ali K; Choudhury A; Acharya V; Pinchuk I; Torres AG; English RD; Wiktorowicz JE; Loeffelholz M; Kumar R; Shi L; Nie W; Braun W; Herman B; Hausladen A; Feng H; Stamler JS; Pothoulakis C
    Nat Med; 2011 Aug; 17(9):1136-41. PubMed ID: 21857653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins.
    Shen A; Lupardus PJ; Gersch MM; Puri AW; Albrow VE; Garcia KC; Bogyo M
    Nat Struct Mol Biol; 2011 Mar; 18(3):364-71. PubMed ID: 21317893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutralizing hospital-acquired infections.
    Harrington M
    Lab Anim (NY); 2011 Sep; 40(10):288. PubMed ID: 22358194
    [No Abstract]   [Full Text] [Related]  

  • 4. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity.
    Egerer M; Giesemann T; Jank T; Satchell KJ; Aktories K
    J Biol Chem; 2007 Aug; 282(35):25314-21. PubMed ID: 17591770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inositol hexakisphosphate-dependent processing of Clostridium sordellii lethal toxin and Clostridium novyi alpha-toxin.
    Guttenberg G; Papatheodorou P; Genisyuerek S; Lü W; Jank T; Einsle O; Aktories K
    J Biol Chem; 2011 Apr; 286(17):14779-86. PubMed ID: 21385871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate.
    Egerer M; Giesemann T; Herrmann C; Aktories K
    J Biol Chem; 2009 Feb; 284(6):3389-95. PubMed ID: 19047051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autoproteolytic activation of bacterial toxins.
    Shen A
    Toxins (Basel); 2010 May; 2(5):963-77. PubMed ID: 22069620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxin B is essential for virulence of Clostridium difficile.
    Lyras D; O'Connor JR; Howarth PM; Sambol SP; Carter GP; Phumoonna T; Poon R; Adams V; Vedantam G; Johnson S; Gerding DN; Rood JI
    Nature; 2009 Apr; 458(7242):1176-9. PubMed ID: 19252482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clostridial toxins: sensing a target in a hostile gut environment.
    Oezguen N; Power TD; Urvil P; Feng H; Pothoulakis C; Stamler JS; Braun W; Savidge TC
    Gut Microbes; 2012; 3(1):35-41. PubMed ID: 22356854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neutralizing antibody that blocks delivery of the enzymatic cargo of
    Kroh HK; Chandrasekaran R; Zhang Z; Rosenthal K; Woods R; Jin X; Nyborg AC; Rainey GJ; Warrener P; Melnyk RA; Spiller BW; Lacy DB
    J Biol Chem; 2018 Jan; 293(3):941-952. PubMed ID: 29180448
    [No Abstract]   [Full Text] [Related]  

  • 11. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium difficile toxin A.
    Pruitt RN; Chagot B; Cover M; Chazin WJ; Spiller B; Lacy DB
    J Biol Chem; 2009 Aug; 284(33):21934-21940. PubMed ID: 19553670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a novel virulence factor in Clostridium difficile that modulates toxin sensitivity of cultured epithelial cells.
    Miura M; Kato H; Matsushita O
    Infect Immun; 2011 Sep; 79(9):3810-20. PubMed ID: 21746858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a structural understanding of Clostridium difficile toxins A and B.
    Pruitt RN; Lacy DB
    Front Cell Infect Microbiol; 2012; 2():28. PubMed ID: 22919620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epidemic ribotypes of Clostridium (now Clostridioides) difficile are likely to be more virulent than non-epidemic ribotypes in animal models.
    Vitucci JC; Pulse M; Tabor-Simecka L; Simecka J
    BMC Microbiol; 2020 Feb; 20(1):27. PubMed ID: 32024477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human intestinal enteroids as a model of
    Engevik MA; Danhof HA; Chang-Graham AL; Spinler JK; Engevik KA; Herrmann B; Endres BT; Garey KW; Hyser JM; Britton RA; Versalovic J
    Am J Physiol Gastrointest Liver Physiol; 2020 May; 318(5):G870-G888. PubMed ID: 32223302
    [No Abstract]   [Full Text] [Related]  

  • 16. Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function.
    Jank T; Giesemann T; Aktories K
    Glycobiology; 2007 Apr; 17(4):15R-22R. PubMed ID: 17237138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing of Clostridium difficile toxins.
    Giesemann T; Egerer M; Jank T; Aktories K
    J Med Microbiol; 2008 Jun; 57(Pt 6):690-696. PubMed ID: 18480324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medical microbiology: A toxin contest.
    Ballard JD
    Nature; 2010 Oct; 467(7316):665-6. PubMed ID: 20930831
    [No Abstract]   [Full Text] [Related]  

  • 19. The role of toxin A and toxin B in Clostridium difficile infection.
    Kuehne SA; Cartman ST; Heap JT; Kelly ML; Cockayne A; Minton NP
    Nature; 2010 Oct; 467(7316):711-3. PubMed ID: 20844489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a neutralizing antibody helps identify structural features critical for binding of
    Kroh HK; Chandrasekaran R; Rosenthal K; Woods R; Jin X; Ohi MD; Nyborg AC; Rainey GJ; Warrener P; Spiller BW; Lacy DB
    J Biol Chem; 2017 Sep; 292(35):14401-14412. PubMed ID: 28705932
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 19.