These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 21857660)

  • 1. Using simple donors to drive the equilibria of glycosyltransferase-catalyzed reactions.
    Gantt RW; Peltier-Pain P; Cournoyer WJ; Thorson JS
    Nat Chem Biol; 2011 Aug; 7(10):685-91. PubMed ID: 21857660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadening the scope of glycosyltransferase-catalyzed sugar nucleotide synthesis.
    Gantt RW; Peltier-Pain P; Singh S; Zhou M; Thorson JS
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7648-53. PubMed ID: 23610417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput colorimetric assays for nucleotide sugar formation and glycosyl transfer.
    Gantt RW; Thorson JS
    Methods Enzymol; 2012; 516():345-60. PubMed ID: 23034237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple strategy for glycosyltransferase-catalyzed aminosugar nucleotide synthesis.
    Zhang J; Singh S; Hughes RR; Zhou M; Sunkara M; Morris AJ; Thorson JS
    Chembiochem; 2014 Mar; 15(5):647-52. PubMed ID: 24677528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of unnatural sugar nucleotides and their evaluation as donor substrates in glycosyltransferase-catalyzed reactions.
    Khaled A; Ivannikova T; Augé C
    Carbohydr Res; 2004 Nov; 339(16):2641-9. PubMed ID: 15519322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycobiology: Challenging reaction equilibria.
    Field RA
    Nat Chem Biol; 2011 Sep; 7(10):658-9. PubMed ID: 21931313
    [No Abstract]   [Full Text] [Related]  

  • 7. OcUGT1-Catalyzing Glycodiversification of Steroids through Glucosylation and Transglucosylation Actions.
    Xu YL; Kong JQ
    Molecules; 2020 Jan; 25(3):. PubMed ID: 31979165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Sweet Side of Plant-Specialized Metabolism.
    Louveau T; Osbourn A
    Cold Spring Harb Perspect Biol; 2019 Dec; 11(12):. PubMed ID: 31235546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms.
    Charnock SJ; Davies GJ
    Biochemistry; 1999 May; 38(20):6380-5. PubMed ID: 10350455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions.
    Zhang C; Griffith BR; Fu Q; Albermann C; Fu X; Lee IK; Li L; Thorson JS
    Science; 2006 Sep; 313(5791):1291-4. PubMed ID: 16946071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cofactor-Driven Cascade Reactions Enable the Efficient Preparation of Sugar Nucleotides.
    Zheng Y; Zhang J; Meisner J; Li W; Luo Y; Wei F; Wen L
    Angew Chem Int Ed Engl; 2022 May; 61(20):e202115696. PubMed ID: 35212445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods.
    Tvaroška I
    Carbohydr Res; 2015 Feb; 403():38-47. PubMed ID: 25060837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput assays of leloir-glycosyltransferase reactions: The applications of rYND1 in glycotechnology.
    Li Y; Hou J; Wang F; Sheng J
    J Biotechnol; 2016 Jun; 227():10-18. PubMed ID: 27059478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring specificity of glycosyltransferases: synthesis of new sugar nucleotide related molecules as putative donor substrates.
    Khaled A; Piotrowska O; Dominiak K; Augé C
    Carbohydr Res; 2008 Feb; 343(2):167-78. PubMed ID: 18048019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereoselective chemical synthesis of sugar nucleotides via direct displacement of acylated glycosyl bromides.
    Timmons SC; Jakeman DL
    Org Lett; 2007 Mar; 9(7):1227-30. PubMed ID: 17338534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Enzymatic Synthesis of dTDP-Activated Sugar Nucleotides.
    Wei F; Yuan R; Wen Q; Wen L
    Angew Chem Int Ed Engl; 2023 May; 62(20):e202217894. PubMed ID: 36840742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the Catalytic Flexibility and Reversibility of Plant Glycosyltransferase HtUGT72AS1 for Glycodiversification of Phenolic Compounds.
    Wen C; Wu HC; Ouyang WH; Nie JX; Guo YP; Wang F; Hu LL; Yang JH; Zheng LJ; Wang JL; Huang W; Liang GP; Jiang RW
    J Agric Food Chem; 2023 Jun; 71(23):8998-9008. PubMed ID: 37260384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Donor specificity of YjiC glycosyltransferase determines the conjugation of cytosolic NDP-sugar in in vivo glycosylation reactions.
    Pandey RP; Parajuli P; Gurung RB; Sohng JK
    Enzyme Microb Technol; 2016 Sep; 91():26-33. PubMed ID: 27444326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple chemical synthesis of sugar nucleoside diphosphates in water.
    Tanaka H; Yoshimura Y; Hindsgaul O
    Curr Protoc Nucleic Acid Chem; 2013 Oct; 54():13.12.1-13.12.10. PubMed ID: 24510796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate flexibility of vicenisaminyltransferase VinC involved in the biosynthesis of vicenistatin.
    Minami A; Eguchi T
    J Am Chem Soc; 2007 Apr; 129(16):5102-7. PubMed ID: 17388594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.