These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

514 related articles for article (PubMed ID: 21857712)

  • 1. Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals.
    Liu J; Fan Z; Xiao H; Zhang W; Guan C; Yuan L
    Appl Opt; 2011 Aug; 50(24):4868-72. PubMed ID: 21857712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring for 3D photonic bandgap structures in the 11 f.c.c. space groups.
    Maldovan M; Ullal CK; Carter WC; Thomas EL
    Nat Mater; 2003 Oct; 2(10):664-7. PubMed ID: 12970758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings.
    David S; Chelnokov A; Lourtioz JM
    Opt Lett; 2000 Jul; 25(14):1001-3. PubMed ID: 18064253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab.
    Safavi-Naeini AH; Painter O
    Opt Express; 2010 Jul; 18(14):14926-43. PubMed ID: 20639979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and fabrication of rod-type two-dimensional photonic crystal slabs with large high-order bandgaps in near-infrared wavelengths.
    Jiang L; Jia W; Zheng G; Li X
    Opt Lett; 2012 May; 37(9):1424-6. PubMed ID: 22555692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex 2D photonic crystals with analogue local symmetry as 12-fold quasicrystals.
    Cheng SC; Zhu X; Yang S
    Opt Express; 2009 Sep; 17(19):16710-5. PubMed ID: 19770885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete photonic bandgaps in 12-fold symmetric quasicrystals.
    Zoorob ME; Charlton MD; Parker GJ; Baumberg JJ; Netti MC
    Nature; 2000 Apr; 404(6779):740-3. PubMed ID: 10783882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large complete bandgaps in a two-dimensional square photonic crystal with isolated single-atom dielectric rods in air.
    Yang XL; Cai LZ; Wang YR; Dong GY; Shen XX; Meng XF; Hu Y
    Nanotechnology; 2008 Jan; 19(2):025201. PubMed ID: 21817535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-metallic three-dimensional photonic crystals with a large infrared bandgap.
    Fleming JG; Lin SY; El-Kady I; Biswas R; Ho KM
    Nature; 2002 May; 417(6884):52-5. PubMed ID: 11986662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental measurement of the photonic properties of icosahedral quasicrystals.
    Man W; Megens M; Steinhardt PJ; Chaikin PM
    Nature; 2005 Aug; 436(7053):993-6. PubMed ID: 16107842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical nanoparticle bragg mirrors: tandem and gradient architectures.
    Redel E; Huai C; Renner M; von Freymann G; Ozin GA
    Small; 2011 Dec; 7(24):3465-71. PubMed ID: 22009683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured magnonic crystals with size-tunable bandgaps.
    Wang ZK; Zhang VL; Lim HS; Ng SC; Kuok MH; Jain S; Adeyeye AO
    ACS Nano; 2010 Feb; 4(2):643-8. PubMed ID: 20099868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peculiarities of the band structure of multi-component photonic crystals with different dimensions.
    Samusev AK; Samusev KB; Rybin MV; Limonov MF
    J Phys Condens Matter; 2010 Mar; 22(11):115401. PubMed ID: 21389463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified annular photonic crystals for enhanced band gap properties and iso-frequency contour engineering.
    Giden IH; Kurt H
    Appl Opt; 2012 Mar; 51(9):1287-96. PubMed ID: 22441474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb.
    Singh BK; Pandey PC
    Appl Opt; 2016 Jul; 55(21):5684-92. PubMed ID: 27463924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional control of light in a two-dimensional photonic crystal slab.
    Chow E; Lin SY; Johnson SG; Villeneuve PR; Joannopoulos JD; Wendt JR; Vawter GA; Zubrzycki W; Hou H; Alleman A
    Nature; 2000 Oct; 407(6807):983-6. PubMed ID: 11069173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic crystals--a step towards integrated circuits for photonics.
    Thylén L; Qiu M; Anand S
    Chemphyschem; 2004 Sep; 5(9):1268-83. PubMed ID: 15499844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diamond-structured photonic crystals.
    Maldovan M; Thomas EL
    Nat Mater; 2004 Sep; 3(9):593-600. PubMed ID: 15343291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of the complete photonic bandgap of two-dimensional photonic crystal.
    Chau YF; Wu FL; Jiang ZH; Li HY
    Opt Express; 2011 Mar; 19(6):4862-7. PubMed ID: 21445122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.