These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21857870)

  • 1. FPGA acceleration of rigid-molecule docking codes.
    Sukhwani B; Herbordt MC
    IET Comput Digit Tech; 2010 May; 4(3):184-195. PubMed ID: 21857870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPU Optimizations for a Production Molecular Docking Code.
    Landaverde R; Herbordt MC
    IEEE Conf High Perform Extreme Comput; 2014 Sep; 2014():. PubMed ID: 26594667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FPGA Acceleration of the phylogenetic likelihood function for Bayesian MCMC inference methods.
    Zierke S; Bakos JD
    BMC Bioinformatics; 2010 Apr; 11():184. PubMed ID: 20385005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerating multi-emitter localization in super-resolution localization microscopy with FPGA-GPU cooperative computation.
    Gui D; Chen Y; Kuang W; Shang M; Wang Z; Huang ZL
    Opt Express; 2021 Oct; 29(22):35247-35260. PubMed ID: 34808963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA).
    Li IT; Shum W; Truong K
    BMC Bioinformatics; 2007 Jun; 8():185. PubMed ID: 17555593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PCIe-based FPGA-GPU heterogeneous computation for real-time multi-emitter fitting in super-resolution localization microscopy.
    Gui D; Chen Y; Kuang W; Shang M; Zhang Y; Huang ZL
    Biomed Opt Express; 2022 Jun; 13(6):3401-3415. PubMed ID: 35781968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GPU-Accelerated Flexible Molecular Docking.
    Fan M; Wang J; Jiang H; Feng Y; Mahdavi M; Madduri K; Kandemir MT; Dokholyan NV
    J Phys Chem B; 2021 Feb; 125(4):1049-1060. PubMed ID: 33497567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FPGA Implementation of the Coupled Filtering Method and the Affine Warping Method.
    Zhang C; Liang T; Mok PKT; Yu W
    IEEE Trans Nanobioscience; 2017 Jul; 16(5):314-325. PubMed ID: 28534779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating Faceting Wide-Field Imaging Algorithm with FPGA for SKA Radio Telescope as a Vast Sensor Array.
    Song Y; Zhu Y; Nan T; Hou J; Du S; Song S
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32707801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FPGA-based neural network accelerators for millimeter-wave radio-over-fiber systems.
    Lee J; He J; Wang K
    Opt Express; 2020 Apr; 28(9):13384-13400. PubMed ID: 32403814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GPU-accelerated Monte Carlo convolution/superposition implementation for dose calculation.
    Zhou B; Yu CX; Chen DZ; Hu XS
    Med Phys; 2010 Nov; 37(11):5593-603. PubMed ID: 21158271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time FPGA Accelerated Stereo Matching for Temporal Statistical Pattern Projector Systems.
    Brus Z; Kos M; Erker M; Kramberger I
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics.
    Iakovou G; Hayward S; Laycock SD
    J Mol Graph Model; 2015 Sep; 61():1-12. PubMed ID: 26186491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next-generation acceleration and code optimization for light transport in turbid media using GPUs.
    Alerstam E; Lo WC; Han TD; Rose J; Andersson-Engels S; Lilge L
    Biomed Opt Express; 2010 Sep; 1(2):658-75. PubMed ID: 21258498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-protein docking on hardware accelerators: comparison of GPU and MIC architectures.
    Shimoda T; Suzuki S; Ohue M; Ishida T; Akiyama Y
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S6. PubMed ID: 25707855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modularized architecture of address generation units suitable for real-time processing MR data on an FPGA.
    Li L; Wyrwicz AM
    Rev Sci Instrum; 2016 Jun; 87(6):063705. PubMed ID: 27370457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FPGA implementation of rate-adaptive spatially coupled LDPC codes suitable for optical communications.
    Sun X; Djordjevic IB
    Opt Express; 2019 Feb; 27(3):3422-3428. PubMed ID: 30732362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.
    Tayara H; Ham W; Chong KT
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration of fiber tracking in DTI tractography by reconfigurable computer hardware.
    Singh M; Kwatra A; Wong CW; Prasanna V
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4819-22. PubMed ID: 17947118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New FPGA Architecture of FAST and BRIEF Algorithm for On-Board Corner Detection and Matching.
    Huang J; Zhou G; Zhou X; Zhang R
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29597331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.