These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21858048)

  • 1. Development of immune-specific interaction potentials and their application in the multi-agent-system VaccImm.
    Woelke AL; von Eichborn J; Murgueitio MS; Worth CL; Castiglione F; Preissner R
    PLoS One; 2011; 6(8):e23257. PubMed ID: 21858048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VaccImm: simulating peptide vaccination in cancer therapy.
    von Eichborn J; Woelke AL; Castiglione F; Preissner R
    BMC Bioinformatics; 2013 Apr; 14():127. PubMed ID: 23586423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MHC-Optimized Peptide Scaffold for Improved Antigen Presentation and Anti-Tumor Response.
    Tagliamonte M; Mauriello A; Cavalluzzo B; Ragone C; Manolio C; Luciano A; Barbieri A; Palma G; Scognamiglio G; Di Mauro A; Di Bonito M; Tornesello ML; Buonaguro FM; Vitagliano L; Caporale A; Ruvo M; Buonaguro L
    Front Immunol; 2021; 12():769799. PubMed ID: 34745146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide vaccines prevent tumor growth by activating T cells that respond to native tumor antigens.
    Jordan KR; McMahan RH; Kemmler CB; Kappler JW; Slansky JE
    Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4652-7. PubMed ID: 20133772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cancer vaccines. Any future?
    Myc LA; Gamian A; Myc A
    Arch Immunol Ther Exp (Warsz); 2011 Aug; 59(4):249-59. PubMed ID: 21644030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antitumor vaccination using peptide based vaccines.
    Eisenbach L; Bar-Haim E; El-Shami K
    Immunol Lett; 2000 Sep; 74(1):27-34. PubMed ID: 10996624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards patient-specific tumor antigen selection for vaccination.
    Rammensee HG; Weinschenk T; Gouttefangeas C; Stevanović S
    Immunol Rev; 2002 Oct; 188():164-76. PubMed ID: 12445290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Peptide Dose Vaccination Promotes the Early Selection of Tumor Antigen-Specific CD8 T-Cells of Enhanced Functional Competence.
    Carretero-Iglesia L; Couturaud B; Baumgaertner P; Schmidt J; Maby-El Hajjami H; Speiser DE; Hebeisen M; Rufer N
    Front Immunol; 2019; 10():3016. PubMed ID: 31969886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of Peptide Vaccines to Induce Robust Antitumor CD4 T-cell Responses.
    Kumai T; Lee S; Cho HI; Sultan H; Kobayashi H; Harabuchi Y; Celis E
    Cancer Immunol Res; 2017 Jan; 5(1):72-83. PubMed ID: 27941004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current developments with peptide-based human tumor vaccines.
    Khazaie K; Bonertz A; Beckhove P
    Curr Opin Oncol; 2009 Nov; 21(6):524-30. PubMed ID: 19770763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico design of discontinuous peptides representative of B and T-cell epitopes from HER2-ECD as potential novel cancer peptide vaccines.
    Manijeh M; Mehrnaz K; Violaine M; Hassan M; Abbas J; Mohammad R
    Asian Pac J Cancer Prev; 2013; 14(10):5973-81. PubMed ID: 24289611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure and function of MHC molecules. Possible implications for the control of tumor growth by MHC-restricted T cells.
    Kourilsky P; Jaulin C; Ley V
    Semin Cancer Biol; 1991 Oct; 2(5):275-82. PubMed ID: 1773044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The immunological synapse: a molecular machine controlling T cell activation.
    Grakoui A; Bromley SK; Sumen C; Davis MM; Shaw AS; Allen PM; Dustin ML
    Science; 1999 Jul; 285(5425):221-7. PubMed ID: 10398592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand.
    Choudhuri K; Wiseman D; Brown MH; Gould K; van der Merwe PA
    Nature; 2005 Jul; 436(7050):578-82. PubMed ID: 16049493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal control in a model of dendritic cell transfection cancer immunotherapy.
    Castiglione F; Piccoli B
    Bull Math Biol; 2006 Feb; 68(2):255-74. PubMed ID: 16794930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective therapeutic anticancer vaccines based on precision guiding of cytolytic T lymphocytes.
    Melief CJ; Van Der Burg SH; Toes RE; Ossendorp F; Offringa R
    Immunol Rev; 2002 Oct; 188():177-82. PubMed ID: 12445291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dancing the immunological two-step.
    Malissen B
    Science; 1999 Jul; 285(5425):207-8. PubMed ID: 10428718
    [No Abstract]   [Full Text] [Related]  

  • 18. [The cow, the boy and the lymph node--immunological principles for vaccines].
    Munthe LA
    Tidsskr Nor Laegeforen; 2006 Oct; 126(19):2532-7. PubMed ID: 17028635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide-based vaccines for cancer therapy.
    Parmiani G; Russo V; Maccalli C; Parolini D; Rizzo N; Maio M
    Hum Vaccin Immunother; 2014; 10(11):3175-8. PubMed ID: 25483658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Changing Landscape of Therapeutic Cancer Vaccines-Novel Platforms and Neoantigen Identification.
    Jou J; Harrington KJ; Zocca MB; Ehrnrooth E; Cohen EEW
    Clin Cancer Res; 2021 Feb; 27(3):689-703. PubMed ID: 33122346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.