These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 21858222)

  • 1. Diffuse and specific tectopulvinar terminals in the tree shrew: synapses, synapsins, and synaptic potentials.
    Wei H; Masterson SP; Petry HM; Bickford ME
    PLoS One; 2011; 6(8):e23781. PubMed ID: 21858222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural examination of diffuse and specific tectopulvinar projections in the tree shrew.
    Chomsung RD; Petry HM; Bickford ME
    J Comp Neurol; 2008 Sep; 510(1):24-46. PubMed ID: 18615501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functions of synapsins in corticothalamic facilitation: important roles of synapsin I.
    Nikolaev M; Heggelund P
    J Physiol; 2015 Oct; 593(19):4499-510. PubMed ID: 26256545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two distinct types of corticothalamic EPSPs and their contribution to short-term synaptic plasticity.
    Li J; Guido W; Bickford ME
    J Neurophysiol; 2003 Nov; 90(5):3429-40. PubMed ID: 12890796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructure of ipsilateral and contralateral tectopulvinar projections in the mouse.
    Naeem N; Whitley JB; Slusarczyk AS; Bickford ME
    J Comp Neurol; 2022 May; 530(7):1099-1111. PubMed ID: 34636423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic development of the mouse dorsal lateral geniculate nucleus.
    Bickford ME; Slusarczyk A; Dilger EK; Krahe TE; Kucuk C; Guido W
    J Comp Neurol; 2010 Mar; 518(5):622-35. PubMed ID: 20034053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synapsin-dependent development of glutamatergic synaptic vesicles and presynaptic plasticity in postnatal mouse brain.
    Bogen IL; Jensen V; Hvalby O; Walaas SI
    Neuroscience; 2009 Jan; 158(1):231-41. PubMed ID: 18606212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terminals of the major thalamic input to visual cortex are devoid of synapsin proteins.
    Owe SG; Erisir A; Heggelund P
    Neuroscience; 2013 Jul; 243():115-25. PubMed ID: 23535254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synapsin utilization differs among functional classes of synapses on thalamocortical cells.
    Kielland A; Erisir A; Walaas SI; Heggelund P
    J Neurosci; 2006 May; 26(21):5786-93. PubMed ID: 16723536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclei-specific differences in nerve terminal distribution, morphology, and development in mouse visual thalamus.
    Hammer S; Carrillo GL; Govindaiah G; Monavarfeshani A; Bircher JS; Su J; Guido W; Fox MA
    Neural Dev; 2014 Jul; 9():16. PubMed ID: 25011644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synapsin Isoforms Regulating GABA Release from Hippocampal Interneurons.
    Song SH; Augustine GJ
    J Neurosci; 2016 Jun; 36(25):6742-57. PubMed ID: 27335405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synapsin selectively controls the mobility of resting pool vesicles at hippocampal terminals.
    Orenbuch A; Shalev L; Marra V; Sinai I; Lavy Y; Kahn J; Burden JJ; Staras K; Gitler D
    J Neurosci; 2012 Mar; 32(12):3969-80. PubMed ID: 22442064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of neurotransmitter release by synapsin III.
    Feng J; Chi P; Blanpied TA; Xu Y; Magarinos AM; Ferreira A; Takahashi RH; Kao HT; McEwen BS; Ryan TA; Augustine GJ; Greengard P
    J Neurosci; 2002 Jun; 22(11):4372-80. PubMed ID: 12040043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thalamic burst firing propensity: a comparison of the dorsal lateral geniculate and pulvinar nuclei in the tree shrew.
    Wei H; Bonjean M; Petry HM; Sejnowski TJ; Bickford ME
    J Neurosci; 2011 Nov; 31(47):17287-99. PubMed ID: 22114295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic organization of striate cortex projections in the tree shrew: A comparison of the claustrum and dorsal thalamus.
    Day-Brown JD; Slusarczyk AS; Zhou N; Quiggins R; Petry HM; Bickford ME
    J Comp Neurol; 2017 Apr; 525(6):1403-1420. PubMed ID: 26971364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative distribution of synapses in the pulvinar nucleus of the cat: implications regarding the "driver/modulator" theory of thalamic function.
    Wang S; Eisenback MA; Bickford ME
    J Comp Neurol; 2002 Dec; 454(4):482-94. PubMed ID: 12455011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinase activity is not required for alphaCaMKII-dependent presynaptic plasticity at CA3-CA1 synapses.
    Hojjati MR; van Woerden GM; Tyler WJ; Giese KP; Silva AJ; Pozzo-Miller L; Elgersma Y
    Nat Neurosci; 2007 Sep; 10(9):1125-7. PubMed ID: 17660813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-dependent release of substance P mediates heterosynaptic potentiation of glutamatergic synaptic responses in the rat visual thalamus.
    Masterson SP; Li J; Bickford ME
    J Neurophysiol; 2010 Sep; 104(3):1758-67. PubMed ID: 20660425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes of immunocytochemical localization of vesicular glutamate transporters in the rat visual system after the retinofugal denervation.
    Fujiyama F; Hioki H; Tomioka R; Taki K; Tamamaki N; Nomura S; Okamoto K; Kaneko T
    J Comp Neurol; 2003 Oct; 465(2):234-49. PubMed ID: 12949784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of synapsins I and II among rat retinal synapses.
    Mandell JW; Czernik AJ; De Camilli P; Greengard P; Townes-Anderson E
    J Neurosci; 1992 May; 12(5):1736-49. PubMed ID: 1578266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.