These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 21858669)

  • 1. 2,4,6-Trinitrophenol degradation by Bacillus cereus isolated from a firing range.
    Singh B; Kaur J; Singh K
    Biotechnol Lett; 2011 Dec; 33(12):2411-5. PubMed ID: 21858669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic biodegradation of 2,4,6-trinitrotoluene (TNT) by Bacillus cereus isolated from contaminated soil.
    Mercimek HA; Dincer S; Guzeldag G; Ozsavli A; Matyar F
    Microb Ecol; 2013 Oct; 66(3):512-21. PubMed ID: 23715804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathways for degrading TNT by Thu-Z: a Pantoea sp. strain.
    Zou L; Lu D; Liu Z
    Appl Biochem Biotechnol; 2012 Dec; 168(7):1976-88. PubMed ID: 23076565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustainable remediation--the application of bioremediated soil for use in the degradation of TNT chips.
    Erkelens M; Adetutu EM; Taha M; Tudararo-Aherobo L; Antiabong J; Provatas A; Ball AS
    J Environ Manage; 2012 Nov; 110():69-76. PubMed ID: 22728982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explosive biodegradation in soil slurry batch reactors amended with exogenous microorganisms.
    Shen CF; Hawari JA; Paquet L; Ampleman G; Thiboutot S; Guiot SR
    Water Sci Technol; 2001; 43(3):291-8. PubMed ID: 11381919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil.
    Shen J; Zhang J; Zuo Y; Wang L; Sun X; Li J; Han W; He R
    J Hazard Mater; 2009 Apr; 163(2-3):1199-206. PubMed ID: 18762376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerobic degradation of 2,4,6-trinitrophenol by Proteus sp. strain OSES2 obtained from an explosive contaminated tropical soil.
    Okozide OE; Adebusoye SA; Obayori OS; Rodrigues DF
    Biodegradation; 2021 Dec; 32(6):643-662. PubMed ID: 34487282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of Chlorpyrifos, Malathion, and Dimethoate by Three Strains of Bacteria Isolated from Pesticide-Polluted Soils in Sudan.
    Ishag AE; Abdelbagi AO; Hammad AM; Elsheikh EA; Elsaid OE; Hur JH; Laing MD
    J Agric Food Chem; 2016 Nov; 64(45):8491-8498. PubMed ID: 27771954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of polyacrylamide by bacteria isolated from activated sludge and oil-contaminated soil.
    Wen Q; Chen Z; Zhao Y; Zhang H; Feng Y
    J Hazard Mater; 2010 Mar; 175(1-3):955-9. PubMed ID: 19932560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of poultry litter for biodegradation of soil contaminated with 2,4- and 2,6-dinitrotoluene.
    Gupta G; Bhaskaran H
    J Hazard Mater; 2004 Dec; 116(1-2):167-71. PubMed ID: 15561375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistry for bioremediation and vice versa?
    Stenuit BA; Agathos SN
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1043-64. PubMed ID: 20814673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High TNT-transforming activity by a mixed culture acclimated and maintained on crude-oil-containing media.
    Popesku JT; Singh A; Zhao JS; Hawari J; Ward OP
    Can J Microbiol; 2003 May; 49(5):362-6. PubMed ID: 12897831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioremediation of oil-contaminated soil using Candida catenulata and food waste.
    Joo HS; Ndegwa PM; Shoda M; Phae CG
    Environ Pollut; 2008 Dec; 156(3):891-6. PubMed ID: 18620787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of 2-nitrotoluene by Micrococcus sp. strain SMN-1.
    Mulla SI; Hoskeri RS; Shouche YS; Ninnekar HZ
    Biodegradation; 2011 Feb; 22(1):95-102. PubMed ID: 20582618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil bacterium Pseudomonas sp.: destroyer of mustard gas hydrolysis products.
    Medvedeva N; Polyak Y; Zaytseva T; Zinovieva S
    Biotechnol J; 2007 Aug; 2(8):1033-9. PubMed ID: 17526053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight.
    Ramos JL; González-Pérez MM; Caballero A; van Dillewijn P
    Curr Opin Biotechnol; 2005 Jun; 16(3):275-81. PubMed ID: 15961028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of imazapyr in typical soils in Zhejiang Province, China.
    Wang XD; Zhou SM; Wang HL; Fan DF
    J Environ Sci (China); 2005; 17(4):593-7. PubMed ID: 16158586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of cyanuric acid in soil by Pseudomonas sp. NRRL B-12227 using bioremediation with self-immobilization system.
    Shiomi N; Yamaguchi Y; Nakai H; Fujita T; Katsuda T; Katoh S
    J Biosci Bioeng; 2006 Sep; 102(3):206-9. PubMed ID: 17046534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anthracene biodegradation capacity of newly isolated rhizospheric bacteria Bacillus cereus S13.
    Bibi N; Hamayun M; Khan SA; Iqbal A; Islam B; Shah F; Khan MA; Lee IJ
    PLoS One; 2018; 13(8):e0201620. PubMed ID: 30071070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of trinitrobenzene as a nitrogen source by Pseudomonas vesicularis isolated from soil.
    Davis EP; Boopathy R; Manning J
    Curr Microbiol; 1997 Mar; 34(3):192-7. PubMed ID: 9009074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.