These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 21858721)
1. Crystallinity assessment and in vitro cytotoxicity of polylactide scaffolds for biomedical applications. Sarasua JR; López-Rodríguez N; Zuza E; Petisco S; Castro B; del Olmo M; Palomares T; Alonso-Varona A J Mater Sci Mater Med; 2011 Nov; 22(11):2513-23. PubMed ID: 21858721 [TBL] [Abstract][Full Text] [Related]
2. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Tsuji H Biomaterials; 2003 Feb; 24(4):537-47. PubMed ID: 12437948 [TBL] [Abstract][Full Text] [Related]
3. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt. Tsuji H; Tezuka Y Biomacromolecules; 2004; 5(4):1181-6. PubMed ID: 15244428 [TBL] [Abstract][Full Text] [Related]
4. Experimental evidence for immiscibility of enantiomeric polymers: Phase separation of high-molecular-weight poly(ʟ-lactide)/poly(ᴅ-lactide) blends and its impact on hindering stereocomplex crystallization. Chen Y; Lan Q Int J Biol Macromol; 2024 Mar; 260(Pt 1):129459. PubMed ID: 38232890 [TBL] [Abstract][Full Text] [Related]
5. Cell adhesion and morphology in porous scaffold based on enantiomeric poly(lactic acid) graft-type phospholipid polymers. Watanabe J; Eriguchi T; Ishihara K Biomacromolecules; 2002; 3(6):1375-83. PubMed ID: 12425679 [TBL] [Abstract][Full Text] [Related]
6. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator. Chang WW; Niu J; Peng H; Rong W Int J Biol Macromol; 2023 Dec; 253(Pt 5):127230. PubMed ID: 37797850 [TBL] [Abstract][Full Text] [Related]
7. Polymorphism of racemic poly(L-lactide)/poly(D-lactide) blend: effect of melt and cold crystallization. Bao RY; Yang W; Jiang WR; Liu ZY; Xie BH; Yang MB J Phys Chem B; 2013 Apr; 117(13):3667-74. PubMed ID: 23477609 [TBL] [Abstract][Full Text] [Related]
8. Effect of electron beam irradiation on the structure and properties of electrospun PLLA and PLLA/PDLA blend nanofibers. Zhang X; Kotaki M; Okubayashi S; Sukigara S Acta Biomater; 2010 Jan; 6(1):123-9. PubMed ID: 19508907 [TBL] [Abstract][Full Text] [Related]
9. A poly(lactide) stereocomplex structure with modified magnesium oxide and its effects in enhancing the mechanical properties and suppressing inflammation. Kum CH; Cho Y; Seo SH; Joung YK; Ahn DJ; Han DK Small; 2014 Sep; 10(18):3783-94. PubMed ID: 24820693 [TBL] [Abstract][Full Text] [Related]
10. Enhancing Stereocomplexation Ability of Polylactide by Coalescing from Its Inclusion Complex with Urea. Liu P; Chen XT; Ye HM Polymers (Basel); 2017 Nov; 9(11):. PubMed ID: 30965892 [TBL] [Abstract][Full Text] [Related]
11. Morphology and internal structure control over PLA microspheres by compounding PLLA and PDLA and effects on drug release behavior. Yu B; Meng L; Fu S; Zhao Z; Liu Y; Wang K; Fu Q Colloids Surf B Biointerfaces; 2018 Dec; 172():105-112. PubMed ID: 30142528 [TBL] [Abstract][Full Text] [Related]
12. Poly(L-lactide) nanocomposites containing poly(D-lactide) grafted nanohydroxyapatite with improved interfacial adhesion via stereocomplexation. Huang G; Du Z; Yuan Z; Gu L; Cai Q; Yang X J Mech Behav Biomed Mater; 2018 Feb; 78():10-19. PubMed ID: 29128694 [TBL] [Abstract][Full Text] [Related]
13. Heterostereocomplexation between biodegradable and optically active polyesters as a versatile preparation method for biodegradable materials. Tsuji H; Yamamoto S; Okumura A; Sugiura Y Biomacromolecules; 2010 Jan; 11(1):252-8. PubMed ID: 20000347 [TBL] [Abstract][Full Text] [Related]
14. Molecular weight dependence of the poly(L-lactide)/poly(D-lactide) Stereocomplex at the air-water interface. Duan Y; Liu J; Sato H; Zhang J; Tsuji H; Ozaki Y; Yan S Biomacromolecules; 2006 Oct; 7(10):2728-35. PubMed ID: 17025346 [TBL] [Abstract][Full Text] [Related]
15. Mechanical and thermal property characterization of poly-l-lactide (PLLA) scaffold developed using pressure-controllable green foaming technology. Sheng SJ; Hu X; Wang F; Ma QY; Gu MF Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():612-622. PubMed ID: 25686990 [TBL] [Abstract][Full Text] [Related]
16. Relationship between the Stereocomplex Crystallization Behavior and Mechanical Properties of PLLA/PDLA Blends. Park HS; Hong CK Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34199577 [TBL] [Abstract][Full Text] [Related]
17. Coaxially electrospun core/shell structured poly(L-lactide) acid/chitosan nanofibers for potential drug carrier in tissue engineering. Ji X; Yang W; Wang T; Mao C; Guo L; Xiao J; He N J Biomed Nanotechnol; 2013 Oct; 9(10):1672-8. PubMed ID: 24015496 [TBL] [Abstract][Full Text] [Related]
18. Structure Mediation and Properties of Poly( Yang B; Wang R; Ma HL; Li X; Brünig H; Dong Z; Qi Y; Zhang X Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961279 [TBL] [Abstract][Full Text] [Related]
19. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers. Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354 [TBL] [Abstract][Full Text] [Related]
20. Stereo-complex crystallization of poly(lactic acid)s in block-copolymer phase separation. Uehara H; Karaki Y; Wada S; Yamanobe T ACS Appl Mater Interfaces; 2010 Oct; 2(10):2707-10. PubMed ID: 20836564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]